Answer: The solution for the given expression is 2.
Explanation:
We are given:
An expression having value:
![\log_3 9](https://img.qammunity.org/2019/formulas/mathematics/college/j4indj8gns1hus3kaqlu67ng9vvhdhecl6.png)
Using the identities:
......(1)
......(2)
Evaluating the expression:
![\Rightarrow \log_3 9=\log _3 3^2](https://img.qammunity.org/2019/formulas/mathematics/college/nkiewh9zbydfnotcirpp40l5httsthpqis.png)
Using identity 1:
![\Rightarrow \log _3 3^2=2\log_3 3](https://img.qammunity.org/2019/formulas/mathematics/college/rpsh10m72h1mvsdh4pi5b83em0ocosa5v3.png)
Using identity 2:
![2\log_3 3=2* 1=2](https://img.qammunity.org/2019/formulas/mathematics/college/4f84praqbzak7lqo9owr9mmpl19wt6nc68.png)
Hence, the solution for the given expression is 2.