208k views
5 votes
What are the exact values of sin theta cos theta tan theta if (3,-4) is a point on the terminal side of theta?

1 Answer

1 vote

\bf (\stackrel{a}{3}~,~\stackrel{b}{-4})\impliedby \textit{now let's find the \underline{hypotenuse}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies c=√(a^2+b^2) \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ c=√(3^2+(-4)^2)\implies c=√(25)\implies \boxed{c=5}


\bf -------------------------------\\\\ sin(\theta )=\cfrac{\stackrel{opposite}{-4}}{\stackrel{hypotenuse}{5}}\qquad cos(\theta )=\cfrac{\stackrel{adjacent}{3}}{\stackrel{hypotenuse}{5}}\qquad tan(\theta )=\cfrac{\stackrel{opposite}{-4}}{\stackrel{adjacent}{3}}
User Tom Wuttke
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories