208k views
5 votes
What are the exact values of sin theta cos theta tan theta if (3,-4) is a point on the terminal side of theta?

1 Answer

1 vote

\bf (\stackrel{a}{3}~,~\stackrel{b}{-4})\impliedby \textit{now let's find the \underline{hypotenuse}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies c=√(a^2+b^2) \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ c=√(3^2+(-4)^2)\implies c=√(25)\implies \boxed{c=5}


\bf -------------------------------\\\\ sin(\theta )=\cfrac{\stackrel{opposite}{-4}}{\stackrel{hypotenuse}{5}}\qquad cos(\theta )=\cfrac{\stackrel{adjacent}{3}}{\stackrel{hypotenuse}{5}}\qquad tan(\theta )=\cfrac{\stackrel{opposite}{-4}}{\stackrel{adjacent}{3}}
User Tom Wuttke
by
7.7k points