Suppose
![p(x)=ax^2+bx+c](https://img.qammunity.org/2019/formulas/mathematics/high-school/as6wc9opsrya8pfb8lmlqzpwixv20qf8hq.png)
has two roots, reciprocals of one another. Call them
![r_1,r_2](https://img.qammunity.org/2019/formulas/mathematics/high-school/esy7ddp692z5fr5fkvmvlfl95xej5t0fqy.png)
, with
![r_2=\frac1{r_1}](https://img.qammunity.org/2019/formulas/mathematics/high-school/ga4wbbed25jmcr5n8ol34ms72wcykxko44.png)
.
Let's divide through
![p(x)](https://img.qammunity.org/2019/formulas/mathematics/college/aafakvej27siqwywyuafydxisj3fa5ghh9.png)
by
![a](https://img.qammunity.org/2019/formulas/mathematics/middle-school/29wl7w45fjbhkymu53hsles9qvadja8y1s.png)
for now. By the fundamental theorem of algebra, we can factorize
![p(x)](https://img.qammunity.org/2019/formulas/mathematics/college/aafakvej27siqwywyuafydxisj3fa5ghh9.png)
as
![x^2+\frac ba x+\frac ca=(x-r_1)(x-r_2)=(x-r_1)\left(x-\frac1{r_1}\right)](https://img.qammunity.org/2019/formulas/mathematics/high-school/980wv866so6gr8ipt64su6gqqhmk16aghf.png)
Expand the RHS to get
![x^2-\left(r_1+\frac1{r_1}\right)x+1](https://img.qammunity.org/2019/formulas/mathematics/high-school/166m9njumy35gfah1auit0sgv3d4hul4ue.png)
so we must have
![-\frac ba=r_1+\frac1{r_1}](https://img.qammunity.org/2019/formulas/mathematics/high-school/5zbc8jzoo54cnt9bwzm5belszpgudg2mhq.png)
![\frac ca=1](https://img.qammunity.org/2019/formulas/mathematics/high-school/oz5ojix0dk2hgie1sot156qmjwxg6rwqj1.png)
The first equation says
![a](https://img.qammunity.org/2019/formulas/mathematics/middle-school/29wl7w45fjbhkymu53hsles9qvadja8y1s.png)
and
![b](https://img.qammunity.org/2019/formulas/mathematics/college/myv2xpbx0xoe5ipweiedhwixh3h7ydfst0.png)
occur in a ratio of the negative sum of the roots of
![p(x)](https://img.qammunity.org/2019/formulas/mathematics/college/aafakvej27siqwywyuafydxisj3fa5ghh9.png)
, while the third equation says that the first and last coefficients
![a,c](https://img.qammunity.org/2019/formulas/mathematics/high-school/exn8iymgiso9jzk2ktovuhnfllymvwfjsv.png)
must be the same.