9.9k views
3 votes
Which is the polar form of the parametric equations x=5cos(theta) and y=5sin(theta) ?

a. r= 5(theta)
b. r= 5
c. r= 25 cos (theta) sin (theta)
d. r= 25cos^2 (theta) + 25sin^2 (theta)

1 Answer

2 votes
The polar coordinates are (r,φ), where r=
√(x^2+y^2) and cosφ=
\frac{x}{ \sqrt{x^(2) +y^(2) } }, sinφ=
\frac{y}{ \sqrt{ x^(2) + y^(2) } }.
So, when we are counting r, we obtain that r=
\sqrt{ x^(2) + y^(2) } = \sqrt{(5cos(theta))^(2)+(5sin(theta))^(2)} ==
\sqrt{25(cos(theta)^(2)+sin(theta)^(2)) } =√(25)=5 .
That's why the polar form of the parametric equations is r=5 (the circle of radius 5) and the right answer is B.

User Phani Rithvij
by
5.8k points