230k views
20 votes
A

What is the slope of a line perpendicular to
x + 2y = 4? [2 marks] - Show ALL work
A 2
B 1/2
C -2
D-1/2

2 Answers

14 votes

Answer:

A

Explanation:

The equation of a line in slope- intercept form is

y = mx + c ( m is the slope and c the y- intercept )

Given

x + 2y = 4 ( subtract x from both sides )

2y = - x + 4 ( divide terms by 2 )

y = -
(1)/(2) x + 2 ← in slope- intercept form

with slope m = -
(1)/(2)

Given a line with slope m then the slope of a line perpendicular to it is


m_(perpendicular) = -
(1)/(m) = -
(1)/(-(1)/(2) ) = 2

User Belissa
by
8.7k points
8 votes

To start, the equation has to be converted to slope-intercept form, or
y=mx+b. Start by subtracting x from both sides;
x-x+2y=4,
2y=4-x. Switch 4 and -x around to conform to the formula;
2y=-x+4. Then divide by 2 to isolate y;
y=-(1)/(2)x+2. This is the final equation. Because the slope of a line perpendicular is always the opposite reciprocal (i.e. The opposite reciprocal of 4 is
-(1)/(4), the opposite reciprocal of
-(1)/(5) is 5) the opposite reciprocal of
-(1)/(2) is 2. So the equation of the line is
y=2x, and the answer is A.

User Billmalarky
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.