159k views
2 votes
What is the definite integral of #x^3# from 1 to 2?

User Robina Li
by
7.7k points

1 Answer

4 votes

Answer:


\displaystyle \int\limits^2_1 {x^3} \, dx = (15)/(4)

General Formulas and Concepts:

Calculus

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^2_1 {x^3} \, dx

Step 2: Integrate

  1. [Integral] Reverse Power Rule:
    \displaystyle \int\limits^2_1 {x^3} \, dx = (x^4)/(4) \bigg| \limits^2_1
  2. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle \int\limits^2_1 {x^3} \, dx = (15)/(4)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Minopret
by
8.0k points