Answer:
The initial point is (-8, -4)
Explanation:
Given that the terminal point is (-2,4) and the magnitude of vector v is 10 then we have to find the initial point.
Let the initial point is (x, y).
![\text{By distance formula, the length of line joining the points }(x_1,y_1)\text{ and }(x_2, y_2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/2ft168lvsv8bofk0uznjlpovf5ouaqwvmb.png)
![Distance=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/dogmn3diaw62hi9hh9mn8hr0yk5o5c55eh.png)
![10=√((-2-x)^2+(4-y)^2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ccrk27anogrqsd6lg65p5hd4thyopv15jc.png)
The point which satisfy the above condition is the initial point
Option a: (-0.2, 0.4)
![10=√((-2-(-0.2))^2+(4-0.4)^2)=√(3.24+12.96)=√(16.2)=4.02](https://img.qammunity.org/2019/formulas/mathematics/high-school/5kovcei7q7om8f6zeo6e75o70tywm3zrzp.png)
Not satisfied
Option b: (-8, -4)
![10=√((-2-(-8))^2+(4-(-4))^2)=√(36+64)=√(100)=10](https://img.qammunity.org/2019/formulas/mathematics/high-school/6fc8k0e1gdg0213yhjhirajmxrycunnxdg.png)
Satisfied
Option c: (-12, -6)
![10=√((-2-(-12))^2+(4-(-6))^2)=√(100+100)=√(200)=14.1](https://img.qammunity.org/2019/formulas/mathematics/high-school/38h8095428m30io289ruws3b3og5jm395o.png)
Not satisfied
Option d: (1, 3)
![10=√((-2-1)^2+(4-3)^2)=√(9+1)=√(10)=3.2](https://img.qammunity.org/2019/formulas/mathematics/high-school/k2fs6hf1j15m9x3d5ezydmcdca5l2xv3xd.png)
Not satisfied
Hence, option 2 is correct.
The initial point is (-8, -4)