44.0k views
5 votes
Write an equation for the circle with endpoints of a diameter (9, 4) and (-3, -2)

User Shawnest
by
8.9k points

1 Answer

4 votes
if the diameter is at (9,4) and (-3,-2), then the center of the circle is the midpoint of that segment.

and since we know that the radius of a circle is half of the diameter, whatever long that diameter segment is, the radius is half that.


\bf ~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &&(~ 9 &,& 4~) % (c,d) &&(~ -3 &,& -2~) \end{array}\qquad % coordinates of midpoint \left(\cfrac{ x_2 + x_1}{2}\quad ,\quad \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left( \cfrac{-3+9}{2}~~,~~\cfrac{-2+4}{2} \right)\implies \stackrel{center}{(3~,~1)}


\bf -------------------------------\\\\ ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &&(~ 9 &,& 4~) % (c,d) &&(~ -3 &,& -2~) \end{array} \\\\\\ d = √(( x_2- x_1)^2 + ( y_2- y_1)^2) \\\\\\ d=√((-3-9)^2+(-2-4)^2)\implies d=√((-12)^2+(-6)^2) \\\\\\ d=√(180)\qquad \qquad \qquad radius=\cfrac{√(180)}{2}


\bf -------------------------------\\\\ \textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \qquad center~~(\stackrel{3}{ h},\stackrel{1}{ k})\qquad \qquad radius=\stackrel{(√(180))/(2)}{ r} \\\\\\ (x-3)^2+(y-1)^2=\left( (√(180))/(2) \right)^2\implies (x-3)^2+(y-1)^2=\cfrac{(√(180))^2}{2^2} \\\\\\ (x-3)^2+(y-1)^2=\cfrac{180}{4}\implies (x-3)^2+(y-1)^2=45
User NonlinearFruit
by
8.4k points

No related questions found