Answer:
![y=(1)/(2)(2)^x](https://img.qammunity.org/2019/formulas/mathematics/college/5zojmm93if7hcm7c796te3644io9rz1p8o.png)
Explanation:
The given equation is
![y=ab^x](https://img.qammunity.org/2019/formulas/mathematics/college/h6f3tn5p9rzzksznrvdqdhrw613dtzqydg.png)
It passes through the points (4, 8) and (6, 32). Hence, we have
![8=ab^4.....(1)](https://img.qammunity.org/2019/formulas/mathematics/college/l6nogo4h8kxqva2h2o0grp9bf4jtmn4lqj.png)
![32=ab^6.....(2)](https://img.qammunity.org/2019/formulas/mathematics/college/v8t6e40yx1urrbm7ef08dve758lm684r5l.png)
Divide equation (2) by (1)
![(32)/(8)=(b^6)/(b^4)\\\\4=b^2\\\\b=\pm2](https://img.qammunity.org/2019/formulas/mathematics/college/rgz4f498uskjviw6tdagj1gu7yohh0efan.png)
For b = 2
![8=a(2)^4\\\\8=16a\\\\a={1}{2}](https://img.qammunity.org/2019/formulas/mathematics/college/tz6dephaov6t9l9sttkea0pvj7bd8lle90.png)
For b = -2
![8=a(-2)^4\\\\8=16a\\\\a={1}{2}](https://img.qammunity.org/2019/formulas/mathematics/college/tg2nd93he4f3qp4p9ihpeoagibi0azlh4i.png)
Thus, the values of a and b are
a= 1/2, b = 2 and a= 1/2, b=-2
Thus, the exponential equation is
![y=(1)/(2)(2)^x](https://img.qammunity.org/2019/formulas/mathematics/college/5zojmm93if7hcm7c796te3644io9rz1p8o.png)