The De Broglie wavelength of the electron is equal to
![\lambda= (h)/(p)](https://img.qammunity.org/2019/formulas/physics/college/nxrt12rggqf3583jybdo5kfiptzles6l0k.png)
where h is the Planck constant and p is the electron's momentum. Since this wavelength must be equal to that of the x-ray,
![\lambda=0.185 nm=0.185 \cdot 10^(-9) m](https://img.qammunity.org/2019/formulas/physics/college/uiz736tlwmlt4957fk3l80wdqazgesasx3.png)
we can re-arrange the previous equation to find the momentum of the electron:
![p= (h)/(\lambda)= (6.6 \cdot 10^(-34)Js)/(0.185 \cdot 10^(-9) m)=3.57 \cdot 10^(-24) kg m s^(-1)](https://img.qammunity.org/2019/formulas/physics/college/nfl5r96mi3yeely5jki9cl8iee7xpt4nkk.png)
The kinetic energy of the electron is equal to the square of the momentum divided by twice its mass:
![E= (p^2)/(2m)= ((3.57 \cdot 10^(-24)kgms^(-1))^2)/(2 (9.1 \cdot 10^(-31) kg)) =6.99 \cdot 10^(-18) J](https://img.qammunity.org/2019/formulas/physics/college/tamjlov07vr23cg0045cmits1d3szmgyhj.png)
When the electron is accelerated by a potential difference
, the energy it gains is
![E=q \Delta V](https://img.qammunity.org/2019/formulas/physics/college/ma2j1pr8x5r9e3gvmrf2t4smll36wxvlxw.png)
where q is the electron charge. Re-arranging the formula, we find the potential difference:
![\Delta V= (E)/(q)= (6.99 \cdot 10^(-18) J)/(1.6 \cdot 10^(-19) C)=43.7 V](https://img.qammunity.org/2019/formulas/physics/college/yy6aab71kbjkmacb4yim58ro2v3yzkrrm2.png)