a) Use the mean value theorem.
![H'(6)\approx(H(7)-H(5))/(7-5)=\frac{11-6}2=\frac52\text{ meters/year}](https://img.qammunity.org/2019/formulas/mathematics/college/m5syxfgwo6ejmnbmsr4pr5i8uwnwfvsc9g.png)
Since
![H(t)](https://img.qammunity.org/2019/formulas/mathematics/college/w1lm6y0ufldfrjhmbtzpgyw3nlh6dsry1q.png)
gives the tree's height in meters at time
![t](https://img.qammunity.org/2019/formulas/mathematics/college/wn85rs21zjpgno6qvvr81v18j25hkod1uk.png)
, the value of
![H'(6)](https://img.qammunity.org/2019/formulas/mathematics/college/4h8va41dwlelhtx000ca5k2aknhz01yrkf.png)
informs us how quickly the tree is growing exactly after 6 years have passed. (i.e. the instantaneous rate of change of the tree's height)
b) We use the mean value theorem again. Observe that
![H(5)-H(3)=6-2=4](https://img.qammunity.org/2019/formulas/mathematics/college/ncq6myaw6awx0v4hj4qcqu7wh2z4z0av7y.png)
, and that
![5-3=2](https://img.qammunity.org/2019/formulas/mathematics/college/yr6gpenniomkpiws6apd7swes1bfo6arjq.png)
. By the MVT, there must be some
![3<t<5](https://img.qammunity.org/2019/formulas/mathematics/college/d1lixazwycyscan4ho7jw4w9emg8ryz8yg.png)
such that
![H'(t)=\frac42=2](https://img.qammunity.org/2019/formulas/mathematics/college/6tq9lanfxczhlxg9jmap572inpinxrlhj2.png)
c) The average height of the tree is given by the integral
![\displaystyle\frac1{10-2}\int_2^(10)H(t)\,\mathrm dt](https://img.qammunity.org/2019/formulas/mathematics/college/i47ehd5v40d92bihndt6kzowr24bufj2fz.png)
If you can remember the formula for the area of a trapezoid, then this is pretty easy to compute. With five data points, you end up with four trapezoids constructed by the four adjacent subintervals. The "bases" are given by the values of
![H(t)](https://img.qammunity.org/2019/formulas/mathematics/college/w1lm6y0ufldfrjhmbtzpgyw3nlh6dsry1q.png)
at each pair of endpoints, and the "heights" are the lengths of the subintervals. For the integral itself, we get
![\frac{2+1.5}2(3-2)+\frac{6+2}2(5-3)+\frac{11+6}2(7-5)+\frac{15+11}2(10-7)=\frac{263}4](https://img.qammunity.org/2019/formulas/mathematics/college/a7ms1dm081ckxs4prlbianb9fnafnvul6f.png)
So the average height of the tree (in meters) is
![\displaystyle\frac1{10-2}\int_2^(10)H(t)\,\mathrm dt\approx(263)/(32)](https://img.qammunity.org/2019/formulas/mathematics/college/hrglazcytifbcbaubow08frkx9tobh19pu.png)
d) When
![G=50](https://img.qammunity.org/2019/formulas/mathematics/college/n8b3585t5gdzfyxxnezcop5np4ne1gcyw8.png)
, the diameter of the base can be determined to be
![50=(100x)/(1+x)\implies x=1](https://img.qammunity.org/2019/formulas/mathematics/college/h2otlq2uigs46spaoukav8zt7cn8vlrlpp.png)
We're told that
![(\mathrm dx)/(\mathrm dt)=0.03](https://img.qammunity.org/2019/formulas/mathematics/college/4ohnxqjcdtbag8j0qc2l22q5xu2yxexahd.png)
.
![G](https://img.qammunity.org/2019/formulas/mathematics/college/7241qko1w86rdrch62jkt2b7ak09j7gqly.png)
is a function of
![x](https://img.qammunity.org/2019/formulas/mathematics/college/lhtxftojjkzsmo3o2h4ilq8naohracejui.png)
which is in turn a function of
![t](https://img.qammunity.org/2019/formulas/mathematics/college/wn85rs21zjpgno6qvvr81v18j25hkod1uk.png)
, so when we differentiate, we use the chain rule:
![(\mathrm dG)/(\mathrm dt)=(\mathrm dG)/(\mathrm dx)\cdot(\mathrm dx)/(\mathrm dt)](https://img.qammunity.org/2019/formulas/mathematics/college/9f2iwwva4u0ir9p5kcnckm8gncpub5sm8n.png)
![\implies(\mathrm dG)/(\mathrm dt)=(100)/((1+x)^2)\cdot\frac3{100}=\frac3{(1+x)^2}](https://img.qammunity.org/2019/formulas/mathematics/college/obtey8wyijq57k1gu9ebuxsniflsl7zy0v.png)
When the height of the tree is 50 meters, we found the diameter to be 1 meter, so at this point
![(\mathrm dG)/(\mathrm dt)=\frac34\text{ meters/year}](https://img.qammunity.org/2019/formulas/mathematics/college/xtxyzksjek8hmc5c8uzz7pbjvrgivqep4j.png)