![\frac{12 {a}^(2) {b}^(6) {c}^(5) }{20 {a}^(2) {b}^(8) {c}^(2) }](https://img.qammunity.org/2019/formulas/mathematics/college/1kp7ngl08kynrleob8tlod134f5h8m1r.png)
To begin, we can simplify the coefficients of the numerator and denominator:
![\frac{12 {a}^(2) {b}^(6) {c}^(5) }{20 {a}^(2) {b}^(8) {c}^(2) } = \\ \\ \frac{3 {a}^(2) {b}^(6) {c}^(5) }{5 {a}^(2) {b}^(8) {c}^(2) }](https://img.qammunity.org/2019/formulas/mathematics/college/kvdcy9lwxprrf0ezo996af37n1qw0abo0o.png)
Next, the a
² in both the numerator and denominator will cancel:
![\frac{3 {a}^(2) {b}^(6) {c}^(5) }{5 {a}^(2) {b}^(8) {c}^(2) } = \\ \\ \frac{3 {b}^(6) {c}^(5) }{5 {b}^(8) {c}^(2) }](https://img.qammunity.org/2019/formulas/mathematics/college/sklouqihd16b15p3uq8vt0yyl09p0xlfkp.png)
After that, we can simplify the b and c in the numerator and denominator. Keep in mind that dividing numbers with exponents (that have the same base) is the same as subtraction. For example,
![\frac{{b}^(6) }{ {b}^(8)} }= b^(6-8) = b^(-2)= (1)/(b^2)](https://img.qammunity.org/2019/formulas/mathematics/college/b0ze0bj1kqacxs9x7la6oe90fhmsa3usdu.png)
.
![\frac{3 {b}^(6) {c}^(5) }{5 {b}^(8) {c}^(2) } = \\ \\ \frac{3 {c}^(5) }{5 {b}^(2) {c}^(2) } = \\ \\ \frac{3 {c}^(3) }{5 {b}^(2) }](https://img.qammunity.org/2019/formulas/mathematics/college/8do1f1guo825xwv0j02t1usffjim4laawn.png)
![\frac{12 {a}^(2) {b}^(6) {c}^(5) }{20 {a}^(2) {b}^(8) {c}^(2) }](https://img.qammunity.org/2019/formulas/mathematics/college/1kp7ngl08kynrleob8tlod134f5h8m1r.png)
simplifies to
![\frac{3 {c}^(3) }{5 {b}^(2) }](https://img.qammunity.org/2019/formulas/mathematics/college/50bzdjtv6yyzr4aedjxo26ag2gqf5j1khn.png)
.