235k views
2 votes
Can someone simplify


\frac{12 {a}^(2) {b}^(6) {c}^(5) }{20 {a}^(2) {b}^(8) {c}^(2) }

1 Answer

5 votes

\frac{12 {a}^(2) {b}^(6) {c}^(5) }{20 {a}^(2) {b}^(8) {c}^(2) }

To begin, we can simplify the coefficients of the numerator and denominator:


\frac{12 {a}^(2) {b}^(6) {c}^(5) }{20 {a}^(2) {b}^(8) {c}^(2) } = \\ \\ \frac{3 {a}^(2) {b}^(6) {c}^(5) }{5 {a}^(2) {b}^(8) {c}^(2) }

Next, the a² in both the numerator and denominator will cancel:


\frac{3 {a}^(2) {b}^(6) {c}^(5) }{5 {a}^(2) {b}^(8) {c}^(2) } = \\ \\ \frac{3 {b}^(6) {c}^(5) }{5 {b}^(8) {c}^(2) }

After that, we can simplify the b and c in the numerator and denominator. Keep in mind that dividing numbers with exponents (that have the same base) is the same as subtraction. For example,
\frac{{b}^(6) }{ {b}^(8)} }= b^(6-8) = b^(-2)= (1)/(b^2).


\frac{3 {b}^(6) {c}^(5) }{5 {b}^(8) {c}^(2) } = \\ \\ \frac{3 {c}^(5) }{5 {b}^(2) {c}^(2) } = \\ \\ \frac{3 {c}^(3) }{5 {b}^(2) }


\frac{12 {a}^(2) {b}^(6) {c}^(5) }{20 {a}^(2) {b}^(8) {c}^(2) } simplifies to
\frac{3 {c}^(3) }{5 {b}^(2) }.
User Casper Beyer
by
4.9k points