Answer:
The lateral area of pyramid ABCDE is
in².
Explanation:
According to the properties of trigonometry,
![\tan \theta=(perpendicular)/(base)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ubufhw5b9shf6d8g0kd4e79ds40qdnwf8x.png)
![\tan (60^(\circ))=(height)/(8)](https://img.qammunity.org/2019/formulas/mathematics/high-school/vm4mjvnsgglnrhddckr7znmhgpuvsbl2gb.png)
![8\tan (60^(\circ))=height](https://img.qammunity.org/2019/formulas/mathematics/high-school/72u7xcpdcz6j87cq5ley97kbpux333ef8f.png)
The area of a triangle is
![A=(1)/(2)* base * height](https://img.qammunity.org/2019/formulas/mathematics/high-school/m7x8s10goivxs9d6xvb6dt4s0sbw0qyfqj.png)
![A=(1)/(2)* 16 * 8\tan (60^(\circ))](https://img.qammunity.org/2019/formulas/mathematics/high-school/q38kbwfd81pjutbjteqv6oltq12wrubjlq.png)
![A=8* 8√(3)](https://img.qammunity.org/2019/formulas/mathematics/high-school/nnaxe9ofp1bunvuylix0imhcficvx42yt9.png)
![A_1=64√(3)](https://img.qammunity.org/2019/formulas/mathematics/high-school/1ybdikyxzqccqtx6h2iqbdm3xvcrpiioa4.png)
Lateral surface area of a pyramid is the sum of area of all 4 triangles. So, the lateral area of pyramid ABCDE is
![A=4* A_1](https://img.qammunity.org/2019/formulas/mathematics/high-school/t8oh8gj08322vnrbtxt2fv6hsrg8msrad0.png)
![A=4* 64√(3)](https://img.qammunity.org/2019/formulas/mathematics/high-school/qlso5h9tgoj7q5k37w896npxgu5o48802z.png)
![A=256√(3)](https://img.qammunity.org/2019/formulas/mathematics/high-school/mgbox2zt9d00n7cyw9gkyrx0zxx0e1m49p.png)
Therefore the lateral area of pyramid ABCDE is
in².