65.1k views
1 vote
There are 100.0 grams of each reactant available determine the limiting reactant in this equation

User Websky
by
8.8k points

1 Answer

1 vote
Since you have not included the chemical reaction I will explain you in detail.

1) To determine the limiting agent you need two things:

- the balanced chemical equation

- the amount of every reactant involved as per the chemical equation

2) The work is:

- state the mole ratios of all the reactants: these are the ratios of the coefficientes of the reactans in the balanced chemical equation.


- determine the number of moles of each reactant with this formula:

number of moles = (mass in grams) / (molar mass)

- set the proportion with the two ratios (theoretical moles and actual moles)


- compare which reactant is below than the stated by the theoretical ratio.

3) Example: determine the limiting agent in this reaction if there are 100 grams of each reactant:

i) Chemical equation: H₂ + O₂ → H₂O

ii) Balanced chemical equation: 2H₂ + O₂ → 2H₂O

iii) Theoretical mole ration of the reactants: 2 moles H₂ : 1 mol O₂

iv) Covert 100 g of H₂ into number of moles

n = 100g / 2g/mol = 50 mol of H₂

v) Convert 100 g of O₂ to moles:

n = 100 g / 32 g/mol = 3.125 mol

vi) Actual ratio: 50 mol H₂ / 3.125 mol O₂

vii) Compare the two ratios:

2 mol H₂ / 1 mol O ₂ < 50 mol H₂ / 3.125 mol O₂

Conclusion: the actual ratio of H₂ to O₂ is greater than the theoretical ratio, meaning that the H₂ is in excess respect to the O₂. And that means that O₂ will be consumed completely while some H₂ will remain without react.

Therefore, the O₂ is the limiting reactant in this example.

User Phuong LeCong
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.