Answer:
Option B is correct
Explanation:
Given the equation:
......[1]
Subtraction property of equality states that you subtract the same number to both sides of an equation.
Subtract 4 to both sides in equation [1];
![4+5e^(x-2) -4 = 11-4](https://img.qammunity.org/2019/formulas/mathematics/college/bzubn3isa86ogl5ebikmc0acg1u1cy12ii.png)
Simplify:
![5e^(x-2)= 11](https://img.qammunity.org/2019/formulas/mathematics/college/tdvc6nt24x65ttivwttbvq37f8pr6x23hj.png)
Divide both sides by 5 we get;
![(5e^(x-2))/(5) = (11)/(5)](https://img.qammunity.org/2019/formulas/mathematics/college/cdcdbgayaxymjdwf3dswvohicoib1kejhb.png)
Simplify:
![e^(x-2) = (11)/(5)](https://img.qammunity.org/2019/formulas/mathematics/college/v8rl8f8arfk683vp4rlk9asvgd6vrbx1pe.png)
Taking log both sides we get;
![lne^(x-2) = ln(11)/(5)](https://img.qammunity.org/2019/formulas/mathematics/college/6x9t6m9ga9xld75c4csmdi1spr55qxz6md.png)
Using :
![\ln e^x=x](https://img.qammunity.org/2019/formulas/mathematics/college/ylhap16vebpn10q0pyux3lby2dphk7kogq.png)
Add 2 to both sides of an equation:
![x=\ln(11)/(5)+2](https://img.qammunity.org/2019/formulas/mathematics/college/o3r06ptywff07kbvrmbhls03hmn0dq2yev.png)
Therefore, the solution to
is,
![x=\ln(11)/(5)+2](https://img.qammunity.org/2019/formulas/mathematics/college/o3r06ptywff07kbvrmbhls03hmn0dq2yev.png)