Answer:
![P(60mph\ or\ 70mph) = 0.38](https://img.qammunity.org/2022/formulas/mathematics/college/w3a3s1m1t1vkje9nyhnjsruont7l4bbuwq.png)
![P(x>65mph) = 0.62](https://img.qammunity.org/2022/formulas/mathematics/college/zgdc3oa8gpr3cw8u9ectclrije8jxd77ok.png)
![P(x \le 70mph) = 0.74](https://img.qammunity.org/2022/formulas/mathematics/college/8qn2x06tbijfz2mt93epdq3t3fovfgsx5m.png)
Explanation:
Given
Speed Limits --- States
60 mph ---------- 1
65 mph ----------- 18
70 mph ----------- 18
75 mph ---------- 13
Total -------------- 50
Solving (a): Probability of 60mph or 70mph
This is represented as:
![P(60mph\ or\ 70mph)](https://img.qammunity.org/2022/formulas/mathematics/college/vnftqfi1jj3rnt8zpg3klro28b1d1o017e.png)
We only consider states with speed limits of 60 and 70mph.
So, we have:
![P(60mph\ or\ 70mph) = P(60mph) + P(70mph)](https://img.qammunity.org/2022/formulas/mathematics/college/uxkdmwdgyhb8gnuptfic6gio4o6pchuohv.png)
![P(60mph\ or\ 70mph) = (1)/(50) + (18)/(50)](https://img.qammunity.org/2022/formulas/mathematics/college/nlylidzloermcvs2zxhy1ult5ko83bwcpb.png)
Take L.C.M
![P(60mph\ or\ 70mph) = (1+18)/(50)](https://img.qammunity.org/2022/formulas/mathematics/college/tltf8a3nc7lqdio2srhp972j2xwmwayxmg.png)
![P(60mph\ or\ 70mph) = (19)/(50)](https://img.qammunity.org/2022/formulas/mathematics/college/joeius32tkc82g7952gw4noxdcl4e1oub9.png)
![P(60mph\ or\ 70mph) = 0.38](https://img.qammunity.org/2022/formulas/mathematics/college/w3a3s1m1t1vkje9nyhnjsruont7l4bbuwq.png)
Solving (b): Greater than 65mph
This is represented as:
![P(x>65mph)](https://img.qammunity.org/2022/formulas/mathematics/college/vtfrxhfka3m6oacb9lm3h7nzu1z8g1v4oz.png)
We only consider states with speed limits of 70 and 75mph.
So, we have:
![P(x>65mph) = P(70mph) + P(75mph)](https://img.qammunity.org/2022/formulas/mathematics/college/83scco7tyowkqhhy2pj2jdw63v26p7vlel.png)
This gives:
![P(x>65mph) = (18)/(50) + (13)/(50)](https://img.qammunity.org/2022/formulas/mathematics/college/os2wluw5y67z7d4p1u54b6yg596bk4b2dc.png)
Take L.C.M
![P(x>65mph) = (18+13)/(50)](https://img.qammunity.org/2022/formulas/mathematics/college/ma4xm9zl159cmbbjt50o5z04ne2juneyd8.png)
![P(x>65mph) = (31)/(50)](https://img.qammunity.org/2022/formulas/mathematics/college/x1cvig02q410rlarijzlgidamqc8d4tcza.png)
![P(x>65mph) = 0.62](https://img.qammunity.org/2022/formulas/mathematics/college/zgdc3oa8gpr3cw8u9ectclrije8jxd77ok.png)
Solving (c): 70mph or less
This is represented as:
![P(x \le 70mph)](https://img.qammunity.org/2022/formulas/mathematics/college/7d2wz9gcvxmj0hpwuq4si5hhgyir92jad9.png)
We only consider states with speed limits of 60, 65 and 70mph.
So, we have:
![P(x \le 70mph) = P(60mph) + P(65mph) + P(70mph)](https://img.qammunity.org/2022/formulas/mathematics/college/hakjwwme7wj8j0yv05aghr4t72dvft479a.png)
This gives:
![P(x \le 70mph) = (1)/(50) + (18)/(50) + (18)/(50)](https://img.qammunity.org/2022/formulas/mathematics/college/9fusomw0nj3yx53q5r83kghmikh8ui67to.png)
Take L.C.M
![P(x \le 70mph) = (1+18+18)/(50)](https://img.qammunity.org/2022/formulas/mathematics/college/bnubsknbrhp1il6fl7vmbtrczphhv37nsq.png)
![P(x \le 70mph) = (37)/(50)](https://img.qammunity.org/2022/formulas/mathematics/college/rn614k7gk2eflf6evgucsk9qabswch9x2a.png)
![P(x \le 70mph) = 0.74](https://img.qammunity.org/2022/formulas/mathematics/college/8qn2x06tbijfz2mt93epdq3t3fovfgsx5m.png)