The larger number is 5.
Step-by-step explanation
Lets assume, the larger number is
and the smaller number is
![b](https://img.qammunity.org/2019/formulas/mathematics/college/myv2xpbx0xoe5ipweiedhwixh3h7ydfst0.png)
As the sum of two numbers is 9, so...
![a+b= 9 ...............................(1)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/d2pug035lip1dpmduhh8gmeomq0qe7jcnl.png)
Now, the sum of their squares is 41, so....
![a^2 + b^2 = 41 .......................................(2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ikkbkfkjy130b037thbtip43e4ovfxkx7k.png)
First, solving equation (1) for
....
![b=9-a](https://img.qammunity.org/2019/formulas/mathematics/middle-school/rar8v18w5pjbth760862lt7pyxxsa88iip.png)
Now, plugging this
into equation (2) , we will get...
![a^2 +(9-a)^2 = 41\\ \\ a^2 +81-18a+a^2 =41 \\ \\ 2a^2-18a+81 =41 \\ \\ 2a^2-18a+40=0\\ \\ 2(a^2 -9a+20)=0\\ \\ a^2 -9a+20=0\\ \\ (a-5)(a-4)=0\\ \\ a=5,4](https://img.qammunity.org/2019/formulas/mathematics/middle-school/8p8x2ufsb111niwcfvirc89jhrni3neoq3.png)
If
then
![b=9-5=4](https://img.qammunity.org/2019/formulas/mathematics/middle-school/b2d69b1avhru4j1no6i0ekd8qhrwp9chyt.png)
So, the larger number is 5.