Answer:
The work done to move the object is 27 ft-lbs
B is correct.
Explanation:
A 4-lb. force acting in the direction of (4, -2).
First we find the unit vector of direction of force.
![\hat{a}=(4i)/(√(20))-(2j)/(√(20))](https://img.qammunity.org/2019/formulas/mathematics/high-school/asadrvrmxd6428fahupylvtkocnivtjvgb.png)
4-lb force acting in direction of vector a
![\vec{F}=(4)/(√(20))(4i-2j)](https://img.qammunity.org/2019/formulas/mathematics/high-school/lj6kn1mm8plds2ph4jm8eqeqpen3pixstb.png)
Object move 7 ft from point (0,4) to (5,-1)
Displacement vector whose length 7 ft
![\vec{r}=(7)/(√(50))(5i-5j)](https://img.qammunity.org/2019/formulas/mathematics/high-school/zxex7350890tq695p4iygawvopy8bkqzdt.png)
Now, we will find workdone by force
![W=\vec{F}\cdot \vec{r}](https://img.qammunity.org/2019/formulas/mathematics/high-school/5ekqzji01k7fvrdemzkz3cs2jfryk1pq8g.png)
![W=(4)/(√(20))(4i-2j)\cdot (7)/(√(50))(5i-5j)](https://img.qammunity.org/2019/formulas/mathematics/high-school/r3s2y1ts9q8wgqemj7xzjfe634z8qt56wv.png)
![W=(28)/(√(1000))(20+10)](https://img.qammunity.org/2019/formulas/mathematics/high-school/j2s89fqhw85asn0o8nef4vj15mktmi4d7l.png)
![W=26.56\approx 27\text{ ft-lbs}](https://img.qammunity.org/2019/formulas/mathematics/high-school/5rh23v3kvvtwnlk3ms1m4plik6nnm6liwm.png)
Hence, The work done to move the object is 27 ft-lbs