Answer:
The y-value of the vertex is
![-12](https://img.qammunity.org/2019/formulas/mathematics/college/sp7ezsg91i9x8ncr2iaf738hu2gdllwf8u.png)
Explanation:
we know that
The equation of a vertical parabola into vertex form is equal to
![f(x)=a(x-h)^(2)+k](https://img.qammunity.org/2019/formulas/mathematics/college/i5g5k5hupdw7vfodsw1pzfr1c27000cyoj.png)
where
(h,k) is the vertex of the parabola
In this problem we have
-----> this a vertical parabola open upward
Convert to vertex form
Group terms that contain the same variable, and move the constant to the opposite side of the equation
![f(x)+8=4x^(2)+8x](https://img.qammunity.org/2019/formulas/mathematics/college/l1frwzqmznku5ewgfbs4usak9dv7g4n6of.png)
Factor the leading coefficient
![f(x)+8=4(x^(2)+2x)](https://img.qammunity.org/2019/formulas/mathematics/college/ic7txms3z61ix06fcao4g7isrkc0f4xhdp.png)
Complete the square. Remember to balance the equation by adding the same constants to each side
![f(x)+8+4=4(x^(2)+2x+1)](https://img.qammunity.org/2019/formulas/mathematics/college/z5tj5l9iyrcldtsrtsweciflja4vkkkg5a.png)
![f(x)+12=4(x^(2)+2x+1)](https://img.qammunity.org/2019/formulas/mathematics/college/5c2jyl8w2k0r75d288gipqhg500a6slppi.png)
Rewrite as perfect squares
![f(x)+12=4(x+1)^(2)](https://img.qammunity.org/2019/formulas/mathematics/college/f3m8rck3frwppzwzjkam0mkv3icmlrdu02.png)
![f(x)=4(x+1)^(2)-12](https://img.qammunity.org/2019/formulas/mathematics/college/ldcvzyyknedspf97l4n520lfuejv6hc516.png)
The vertex is the point
![(-1,-12)](https://img.qammunity.org/2019/formulas/mathematics/college/bvyye8iu6lcp3mz26uruufjb2g23iqtss8.png)
The y-value of the vertex is
![-12](https://img.qammunity.org/2019/formulas/mathematics/college/sp7ezsg91i9x8ncr2iaf738hu2gdllwf8u.png)