so they start off with 5 bricks, then they add 2 bricks on the left side and 2 bricks on the right side, namely 4 bricks, so the first row is 5 bricks, the next row is 5+4 or 9 bricks and so on.
5, 9, 13, 17.... <--- as you can see the "common difference" is 4.
![\bf n^(th)\textit{ term of an arithmetic sequence} \\\\ a_n=a_1+(n-1)d\qquad \begin{cases} n=n^(th)\ term\\ a_1=\textit{first term's value}\\ d=\textit{common difference}\\ ----------\\ a_1=5\\ d=4\\ n=25 \end{cases} \\\\\\ a_(25)=5+(25-1)(4)\implies a_(25)=5+(24)(4) \\\\\\ a_(25)=5+96\implies a_(25)=101\\\\ -------------------------------](https://img.qammunity.org/2019/formulas/mathematics/college/hh2czau2fbogl9vmglfwkk8clgzkse0d2t.png)
![\bf \textit{ sum of a finite arithmetic sequence} \\\\ S_n=\cfrac{n(a_1+a_n)}{2}\qquad \begin{cases} n=n^(th)\ term\\ a_1=\textit{first term's value}\\ ----------\\ a_1=5\\ a_(25)=101\\ n=25 \end{cases} \\\\\\ S_(25)=\cfrac{25(5+101)}{2}\implies S_(25)=\cfrac{25(106)}{2}\implies S_(25)=1325](https://img.qammunity.org/2019/formulas/mathematics/college/m82081l9f71udmmcay31wx0sqvrtp4vrmp.png)