42.6k views
1 vote
2^X = 17^X

How do you solve that equation?

User Sonny Ng
by
7.7k points

1 Answer

3 votes

For this case we must solve the following equation:


2 ^ x = 17 ^ x

For this, we follow the steps below:

We find the Neperian logarithm on both sides of the equation to remove the variable from the exponent


ln (2 ^ x) = ln (17 ^ x)

We use one of the logarithm properties to extract x from the exponent:


xln (2) = xln (7)

We subtract xln (7) on both sides of the equation:


xln (2) -xln (7) = 0

We take x common factor:


x (ln (2) -ln (7)) = 0

We divide between
(ln (2) -ln (7))on both sides of the equation, then:


x = 0

Answer:


x = 0

User Fahad Sadah
by
8.2k points