Answer:
x = ± 3 and ± 2
Explanation:
The given quadratic equation is
![(x^(2)-1)^(2)-11(x^(2)-1)+24=0](https://img.qammunity.org/2019/formulas/mathematics/college/r5a6795kufemv5ox4j3ww3wqnjgwahle6l.png)
To make this question easier we will consume ( x² -1 ) = a
a² - 11a + 24 = 0
Now we can factorize this equation easily
a²- 8a - 3a + 24 = 0
a (a-8) - 3 ( a-8) = 0
( a-3 ) ( a-8 ) = 0
Therefore, a - 3 = 0 ⇒ a = 3
or a - 8 = 0 ⇒ a = 8
Now we put the value a
when a = 3 (x² - 1) = 3
x² = 3 + 1 = 4
x = √4
= ± 2
when a = 8 (x² - 1) = 8
x² = 9
x = √9
= ± 3
Therefore, x = ± 3 and ± 2 will be the answer.