Final answer:
The electron will reach the origin first due to its greater acceleration, which is a result of its much smaller mass compared to the proton, despite the forces on both particles being equal in magnitude.
Step-by-step explanation:
The question is asking which particle, a proton at x = -d or an electron at x = +d that are released simultaneously under the influence of electrostatic force, will reach the origin first. According to Newton's second law, force equals mass times acceleration (F = ma). Because the proton and the electron have equal and opposite charges, the magnitude of the force acting on them due to their electrical interaction will be the same. However, the mass of the proton is much greater than that of the electron, resulting in much smaller acceleration for the proton. Consequently, the electron, given its smaller mass and therefore larger acceleration, will reach the origin first.