![f(x,y)=xy-x^2-y^2-3x-3y+12](https://img.qammunity.org/2019/formulas/mathematics/college/t73s3iwcbbjd5e7nvadti0ler9tsuv4qx9.png)
First compute the first-order partial derivatives and find the critical points.
![f_x=y-2x-3](https://img.qammunity.org/2019/formulas/mathematics/college/c7j973l0yixzgp0ab5dsn8hzf0ek9lwcnv.png)
![f_y=x-2y-3](https://img.qammunity.org/2019/formulas/mathematics/college/2gqb9zib4ib7fk3rfjarrhkmkax5436i2x.png)
Both first order derivatives vanish at
![(x,y)=(-3,-3)](https://img.qammunity.org/2019/formulas/mathematics/college/uu4xk72t89oovb1pz50vh1c2gmeiw54tnj.png)
.
Computing the Hessian, we get
![\mathbf H(x,y)=\begin{bmatrix}f_(xx)&f_(xy)\\f_(yx)&f_(yy)\end{bmatrix}=\begin{bmatrix}-2&1\\1&-2\end{bmatrix}](https://img.qammunity.org/2019/formulas/mathematics/college/6ishvlqtvs2sltsknfugil835es97kohba.png)
We have
![\det\mathbf H(x,y)=3>0](https://img.qammunity.org/2019/formulas/mathematics/college/aij0nheonozsejlim2mms781nsgx02jwij.png)
, which means
![(-3,-3)](https://img.qammunity.org/2019/formulas/mathematics/college/p6tk6nqw0r8pugaq1kvd1978d3cps1crvd.png)
is an extremum of
![f(x,y)](https://img.qammunity.org/2019/formulas/mathematics/college/b2jm6vra8x5tmgrpbqgi1cmdg72e2e7w0n.png)
. Since
![f_(xx)(-3,-3)=-2<0](https://img.qammunity.org/2019/formulas/mathematics/college/f4rg392b56v6p854zulk9nuf0y0iojzsc4.png)
, this extremum is a local maximum of
![f(x,y)](https://img.qammunity.org/2019/formulas/mathematics/college/b2jm6vra8x5tmgrpbqgi1cmdg72e2e7w0n.png)
with a value of 21.