Answer:
The angle between
and
is 60º.
Explanation:
From linear algebra, we can determine the angle between both vectors by definition of dot point:
(1)
Where:
,
- Vectors.
,
- Norms of vectors.
- Angle between vectors, measured in sexagesimal degrees.
If we know that
and
, then angle between vectors is:
(2)
![\|\vec u\| = \sqrt{2^(2)+2^(2)+4^(2)}](https://img.qammunity.org/2022/formulas/mathematics/college/76vjjxj1jiegyqerqwg7lo9q4umvff9yz3.png)
![\|\vec u\| \approx 4.899](https://img.qammunity.org/2022/formulas/mathematics/college/492asvx13151r2oncbxxekkizqmhtbl205.png)
(3)
![\|\vec v\| = \sqrt{2^(2)+(-1)^(2)+1^(2)}](https://img.qammunity.org/2022/formulas/mathematics/college/x5rimlcqgcyd76mm0d9et49kz5imxg8jg9.png)
![\|\vec v\| \approx 2.450](https://img.qammunity.org/2022/formulas/mathematics/college/pm6ezuubw729mr80zx0c23q8yoapbdkcvs.png)
![\vec u \bullet \vec v = (2,2,4)\bullet (2,-1,1)](https://img.qammunity.org/2022/formulas/mathematics/college/qh531h5y602ljnh9i76q69hm7smle3rheu.png)
![\vec u \bullet \vec v = 4-2+4](https://img.qammunity.org/2022/formulas/mathematics/college/8m4citgs4290shc5govj8uzjgvasft2z1y.png)
![\vec u \bullet \vec v = 6](https://img.qammunity.org/2022/formulas/mathematics/college/ulwy0cqvghh9b419an0vhpwjnighitgup6.png)
![\cos \theta = (6)/((4.899)\cdot (2.450))](https://img.qammunity.org/2022/formulas/mathematics/college/7nafqndimszi87dbs9uxvw2yvrhptgo409.png)
![\cos \theta = 0.5](https://img.qammunity.org/2022/formulas/mathematics/college/melrf7rwp9nhpixkmxyz7lbgkhn0hr26up.png)
![\theta = 60^(\circ)](https://img.qammunity.org/2022/formulas/physics/high-school/bo29uuuhtdgaj8rixzkkl90rfgdmlo8niq.png)
The angle between
and
is 60º.