8.7k views
0 votes
What are the first three terms of the sequence represented by the recursive formula


a_n=n^2-a-n_-_1 if
a_5= 14 1/4
A. 12.25, –10.25, 13.25
B. 0.25, 3.75, 5.25
C. –13.25, 17.25, –8.25
D. –4.25, –3.25, 7.25

User YouEyeK
by
6.1k points

2 Answers

4 votes

a_n=n^2-a_(n-1)\to a_(n-1)=n^2-a_n

a_5=14(1)/(4);\ n=5\\\\substitute\\\\a_4=4^2-14(1)/(4)=16-14(1)/(4)=1(3)/(4)=1.75

a_3=3^2-1.75=9-1.75=7.25\\\\a_2=2^2-7.25=4-7.25=-3.25\\\\a_1=1^2-(-3.25)=1+3.25=4.25
Answer: D. 4.25; -3.25; 7.25
User Pokstad
by
6.1k points
6 votes

Answer: B. 0.25, 3.75, 5.2

Explanation:

Since, the given sequence,
a_n= n^2 -a_(n-1)

And,
a_5=14(1)/(4)

On substituting n=5 in the given recursive formula,

We get,
a_5=5^2-a_(5-1)\implies a_5=25-a_4\implies 14(1)/(4)= 25-a_4\implies a_4=10(3)/(4)

For, n=4
a_4=4^2-a_(4-1)\implies a_4=16-a_3\implies 10(3)/(4)= 16-a_3\implies a_3=5(1)/(4)\implies a_3=5.25

For, n=3
a_3=3^2-a_(3-1)\implies a_3=9-a_2\implies 5.25= 9-a_2\implies a_2=3.75

For, n=2
a_2=2^2-a_(2-1)\implies a_2=4-a_1\implies 3.75= 4-a_1\implies a_1=0.25

Thus, First second and third terms are,


a_1=0.25,
a_2=3.75 and
a_3=5.25.

User Vagran
by
5.2k points