Answer:
sec e = √(11/8) ⇒ answer B
Explanation:
* Lets revise some identities in trigonometry
# sin²x + cos²x = 1
- Divide both sides by cos²x
∴ sin²x/cos²x + cos²x/cos²x = 1/cos²x
∵ sinx/cosx = tanx
∴ sin²x/cos²x = tan²x
∵ cos²x/cos²x = 1
∵ 1/cosx = secx
∴ 1/cos²x = sec²x
* Now lets write the new identity
# tan²x + 1 = sec²x
- Let x = e
∴ tan²e + 1 = sec²e
- Substitute the value of tan²e in the identity
∵ tan²e = 3/8
∴ 3/8 + 1 = sec²e
- Change the 1 to the fraction 8/8
∴ 3/8 + 8/8 = sec²e ⇒ add the fractions
∴ 11/8 = sec²e
- Take square root for the two sides to find sec e
∴ sec e = √(11/8)
∴ The answer is B