102k views
4 votes
What is the sum of the geometric series E (-2)(-3)^n-1

What is the sum of the geometric series E (-2)(-3)^n-1-example-1

2 Answers

5 votes

Answer:

The sum is 40.

Explanation:

Given,


\sum_(n=1)^(4) (-2)(-3)^(n-1)

We know that,


\sum_(n=1)^(4) (-2)(-3)^(n-1)=(-2)(-3)^(1-1)+(-2)(-3)^(2-1)+(-2)(-3)^(3-1)+(-2)(-3)^(4-1)


=(-2)(-3)^(0)+(-2)(-3)^1+(-2)(-3)^2+(-2)(-3)^3


=-2* 1 - 2* - 3 - 2* 9-2* -27


=-2+6-18+54


=40

Hence,


\sum_(n=1)^(4) (-2)(-3)^(n-1)=40

User Luis Moreno
by
8.4k points
7 votes
Sum of the geometric series: S=?
S=(-2)(-3)^(1-1)+(-2)(-3)^(2-1)+(-2)(-3)^(3-1)+(-2)(-3)^(4-1)
S=(-2)[(-3)^0+(-3)^1+(-3)^2+(-3)^3]
S=(-2)[1+(-3)+9+(-27)]
S=(-2)(1-3+9-27)
S=(-2)(-20)
S=40

Answer: Third option 40
User Morteza Asadi
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories