62.0k views
4 votes
2) Use spherical coordinates to find the integral of f(x,y,z) = z over x^2 + y^2 + z^2 < 4 and x,y,z < 0

2) Use spherical coordinates to find the integral of f(x,y,z) = z over x^2 + y^2 + z-example-1
User Arar
by
6.8k points

1 Answer

5 votes
1. Denote by
\mathcal D the region bounded by the cylinder
x^2+y^2=9 and the planes
z=0 and
z=6. Converting to cylindrical coordinates involves setting



\begin{cases}x=r\cos u\\y=r\sin u\\z=v\end{cases}


and
\mathcal D is obtained by varying the parameters over
0\le r\le3,
0\le u\le2\pi, and
0\le v\le6. The volume element is



\mathrm dV=\mathrm dx\,\mathrm dy\,\mathrm dz=r\,\mathrm dr\,\mathrm du\,\mathrm dv

so the integral becomes


\displaystyle\iiint_(\mathcal D)xz\,\mathrm dV=\int_(v=0)^(v=6)\int_(u=0)^(u=2\pi)\int_(r=0)^(r=3)r^2v\cos u\,\mathrm dr\,\mathrm du\,\mathrm dv=0

2. Now let
\mathcal D denote the region bounded by the sphere
x^2+y^2+z^2=4 and the coordinate planes in the octant in which each coordinate of the point
(x,y,z) is negative.

Converting to spherical coordinates, we set


\begin{cases}x=\rho\cos u\sin v\\y=\rho\sin u\sin v\\z=\rho\cos v\end{cases}

where we obtain
\mathcal D by varying over
0\le\rho\le2,
\pi\le u\le\frac{3\pi}2, and
\frac\pi2\le v\le\pi. The volume element is now


\mathrm dV=\rho^2\sin v\,\mathrm d\rho\,\mathrm du\,\mathrm dv

so the integral becomes


\displaystyle\iiint_(\mathcal D)z\,\mathrm dV=\int_(v=\pi/2)^(v=\pi)\int_(u=\pi)^(u=3\pi/2)\int_(\rho=0)^(\rho=2)\rho^3\cos v\sin v\,\mathrm d\rho\,\mathrm du\,\mathrm dv=-\pi
User Cognitive Hazard
by
5.8k points