Explanation :
It is given that,
Mass of the rock, m = 20 kg
Initially the rock is at rest, u = 0
Final velocity of the rock is, v = 90 m/s
Gravitational potential energy is given by :
............(1)
h is the height.
Using third equation of motion :
![v^2-u^2=2ah](https://img.qammunity.org/2019/formulas/physics/college/h7o4761eeknad8q47w53x2cfu1fw8gle3a.png)
or
![h=(v^2)/(2g)](https://img.qammunity.org/2019/formulas/physics/college/k32n2z9c27qgntz5fmbv2wvk6ybdregxip.png)
Put the value of h in equation (1)
![U=mg* (v^2)/(2g)](https://img.qammunity.org/2019/formulas/physics/college/kq8jpk2voacjjbbndwhnyjrcmjg5ai92o5.png)
![U=(mv^2)/(2)](https://img.qammunity.org/2019/formulas/physics/college/3gskamob2fmompilqg2trmu13wyi5lqgrf.png)
![U=(20\ kg* (90\ m/s)^2)/(2)](https://img.qammunity.org/2019/formulas/physics/college/sakt0msetjtro0debyqcuawtpmdctaqgfe.png)
![U=81000\ J](https://img.qammunity.org/2019/formulas/physics/college/us2mo8kc8eh5ctf6k6h00nnkrvj1zpm7ev.png)
or
U = 81 kJ
Hence, this is the required solution.