191k views
22 votes
Which of these expressions is equal to cos x?

Oa) sin(x - 45°)
Ob) sin x
c) sin (45° - x)
d) sin (90° - x)

User Nickdos
by
8.9k points

1 Answer

13 votes

Answer:


\sin \left(90^(\circ \:)-x\right)=\cos \left(x\right)

Hence, option D is correct.

Explanation:

Given the expression


sin\:\left(90^(\circ )\:-\:x\right)

Using the angle difference identity


\sin \left(s-t\right)=\sin \left(s\right)\cos \left(t\right)-\cos \left(s\right)\sin \left(t\right)

so the expression becomes


sin\:\left(90^(\circ )\:-\:x\right)=\sin \:\left(90^(\circ \:\:)\right)\cos \:\left(x\right)-\cos \:\left(90^(\circ \:\:)\right)\sin \:\left(x\right)

as sin 90° = 1

so sin 90° cos x = cos x

also

cos 90° = 0

so con (90°) sin x = 0

Thus, the expression becomes


\sin \:\left(90^(\circ \:\:)\right)\cos \:\left(x\right)-\cos \:\left(90^(\circ \:\:)\right)\sin \:\left(x\right)=\cos \:\left(x\right)-0


= cos (x)
\cos \left(x\right)-0=\cos \left(x\right)

Therefore,


\sin \left(90^(\circ \:)-x\right)=\cos \left(x\right)

Hence, option D is correct.

User Asad Rao
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories