191k views
22 votes
Which of these expressions is equal to cos x?

Oa) sin(x - 45°)
Ob) sin x
c) sin (45° - x)
d) sin (90° - x)

User Nickdos
by
3.4k points

1 Answer

13 votes

Answer:


\sin \left(90^(\circ \:)-x\right)=\cos \left(x\right)

Hence, option D is correct.

Explanation:

Given the expression


sin\:\left(90^(\circ )\:-\:x\right)

Using the angle difference identity


\sin \left(s-t\right)=\sin \left(s\right)\cos \left(t\right)-\cos \left(s\right)\sin \left(t\right)

so the expression becomes


sin\:\left(90^(\circ )\:-\:x\right)=\sin \:\left(90^(\circ \:\:)\right)\cos \:\left(x\right)-\cos \:\left(90^(\circ \:\:)\right)\sin \:\left(x\right)

as sin 90° = 1

so sin 90° cos x = cos x

also

cos 90° = 0

so con (90°) sin x = 0

Thus, the expression becomes


\sin \:\left(90^(\circ \:\:)\right)\cos \:\left(x\right)-\cos \:\left(90^(\circ \:\:)\right)\sin \:\left(x\right)=\cos \:\left(x\right)-0


= cos (x)
\cos \left(x\right)-0=\cos \left(x\right)

Therefore,


\sin \left(90^(\circ \:)-x\right)=\cos \left(x\right)

Hence, option D is correct.

User Asad Rao
by
3.1k points