Answer:
Option d -
Explanation:
Given :
![\sqrt3(\cos ((5\pi)/(3))+i\sin((5\pi)/(3)))^4](https://img.qammunity.org/2019/formulas/mathematics/high-school/xoll252pmd5802gg0ced27t2pgw8io8r4o.png)
To find : Use DeMoivre's theorem to evaluate the expression?
Solution :
DeMoivre's theorem state that, for complex number
If
then
We have given,
![\sqrt3(\cos ((5\pi)/(3))+i\sin((5\pi)/(3)))^4](https://img.qammunity.org/2019/formulas/mathematics/high-school/xoll252pmd5802gg0ced27t2pgw8io8r4o.png)
On comparing
and n=4
Applying DeMoivre's theorem,
![=(\sqrt3)^4(\cos 4((5\pi)/(3))+i\sin4((5\pi)/(3)))](https://img.qammunity.org/2019/formulas/mathematics/high-school/s5tza9x7luajreu2bwe06bfhoxc63mmtka.png)
![=9(\cos ((20\pi)/(3))+i\sin((20\pi)/(3)))](https://img.qammunity.org/2019/formulas/mathematics/high-school/d3os16crc0uhv19olnwpaj3t2cd5saamp8.png)
![=9(\cos (6\pi+(2\pi)/(3))+i\sin(6\pi+(2\pi)/(3)))](https://img.qammunity.org/2019/formulas/mathematics/high-school/gg8kj8fh9vsa4pwdvjrd4j8vf73wnnehnn.png)
![=9(\cos ((2\pi)/(3))+i\sin((2\pi)/(3)))](https://img.qammunity.org/2019/formulas/mathematics/high-school/lko1n7iphuo2e7jlvp6783z43yyekrp6qv.png)
We know, the value of
![\cos ((2\pi)/(3))=-(1)/(2),\sin ((2\pi)/(3))=(\sqrt3)/(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/g18m8zqre7rnw14vstkrsy6uahuvlvcwr5.png)
![=9(-(1)/(2)+i(\sqrt3)/(2))](https://img.qammunity.org/2019/formulas/mathematics/high-school/dlqf5be98ca63tpns3kok8bxjim5mpp0i7.png)
Therefore, Option d is correct.