Answer:
For 3: The total mass change of the reaction is
![4.255* 10^(3)kg](https://img.qammunity.org/2019/formulas/chemistry/high-school/is12soyh6ps0wx8wlh50pznztjrfeuwyx3.png)
For 4: The mass defect is
and energy equivalent to this mass is
![8.199* 10^(-14)kJ](https://img.qammunity.org/2019/formulas/chemistry/high-school/fsp1rm1ki00la3tukaomwt68tba7hd5jgz.png)
For 5: The equivalent mass of the reaction is
![1.5755* 10^(-11)kg](https://img.qammunity.org/2019/formulas/chemistry/high-school/3x5z5ublt1shc0x3rlaxc4rb4xaj3xsii3.png)
Step-by-step explanation:
To calculate the mass change of the reaction for given energy released, we use Einstein's equation:
![E=\Delta mc^2](https://img.qammunity.org/2019/formulas/chemistry/high-school/2b4wlmbz50bsekdgj1pht5zb99saj4khwh.png)
E = Energy released =
![3.83* 10^(-12)J](https://img.qammunity.org/2019/formulas/chemistry/high-school/sdlcz01h17x5xi8bd716u42rjb36yazm4q.png)
= mass change = ?
c = speed of light =
![3* 10^8m/s](https://img.qammunity.org/2019/formulas/chemistry/high-school/jga4ycqtgnkhppw5hldvght9qiskdu5yhi.png)
Putting values in above equation, we get:
![3.83* 10^(-12)Kgm^2/s^2=\Delta m* (3* 10^8m/s)^2\\\\\Delta m=4.255* 10^3kg](https://img.qammunity.org/2019/formulas/chemistry/high-school/2332nq9istazskkfbgfef0n8lprb8ar55r.png)
Hence, the total mass change of the reaction is
![4.255* 10^(3)kg](https://img.qammunity.org/2019/formulas/chemistry/high-school/is12soyh6ps0wx8wlh50pznztjrfeuwyx3.png)
For the given isotopic representation:
![_(27)^(60)\textrm{Co}](https://img.qammunity.org/2019/formulas/chemistry/high-school/x5vtqzu3y0oiawsnsw0jf38pdn8108i5x9.png)
Atomic number = Number of protons = 27
Mass number = 60
Number of neutrons = Mass number - Atomic number = 60 - 27 = 33
To calculate the mass defect of the nucleus, we use the equation:
where,
= number of protons = 27
= mass of one proton = 1.00728 amu
= number of neutrons = 33
= mass of one neutron = 1.00867 amu
M = Nuclear mass number = 59.9338 amu
Putting values in above equation, we get:
![\Delta m=[(27* 1.00728)+(33* 1.00867)]-[59.9338]\\\\\Delta m=0.54887amu](https://img.qammunity.org/2019/formulas/chemistry/high-school/q0luux1unawnhk96qb6erom6wsdjbrz5kl.png)
Converting the value of amu into kilograms, we use the conversion factor:
So,
![0.54887amu=0.54887* 1.66* 10^(-27)kg=0.911* 10^(-27)kg](https://img.qammunity.org/2019/formulas/chemistry/high-school/awj0f25eqp5cj8kcqvg0shgonu611hv9t6.png)
To calculate the equivalent energy, we use the equation:
![E=\Delta mc^2](https://img.qammunity.org/2019/formulas/chemistry/high-school/2b4wlmbz50bsekdgj1pht5zb99saj4khwh.png)
E = Energy released = ?
= mass change =
![0.911* 10^(-27)kg](https://img.qammunity.org/2019/formulas/chemistry/high-school/p52u28tvw4ln1heuvxlmz8wu1rtvdrke5n.png)
c = speed of light =
![3* 10^8m/s](https://img.qammunity.org/2019/formulas/chemistry/high-school/jga4ycqtgnkhppw5hldvght9qiskdu5yhi.png)
Putting values in above equation, we get:
![E=(0.911* 10^(-27)kg)* (3* 10^8m/s)^2\\\\E=8.199* 10^(-11)J](https://img.qammunity.org/2019/formulas/chemistry/high-school/m0wr43x5jpkl2z4qz0vvffw0c2o2h25xlg.png)
Converting this into kilojoules, we use the conversion factor:
1 kJ = 1000 J
So,
![8.199* 10^(-11)J=8.199* 10^(-14)kJ](https://img.qammunity.org/2019/formulas/chemistry/high-school/uzr911carx6n8s18pwits9q2a3brq12bi6.png)
Hence, the mass defect is
and energy equivalent to this mass is
![8.199* 10^(-14)kJ](https://img.qammunity.org/2019/formulas/chemistry/high-school/fsp1rm1ki00la3tukaomwt68tba7hd5jgz.png)
For the given chemical reaction:
![C_2H_5OH(l)+3O_2(g)\rightarrow 2CO_2(g)+3H_2O(l);\Delta H=-1418kJ/mol](https://img.qammunity.org/2019/formulas/chemistry/high-school/2gryqbgrljuvwe60dz3q9bn89pxdw9lrbz.png)
To calculate the equivalent mass of the reaction for given energy released, we use Einstein's equation:
![E=\Delta mc^2](https://img.qammunity.org/2019/formulas/chemistry/high-school/2b4wlmbz50bsekdgj1pht5zb99saj4khwh.png)
E = Energy released =
![1418kJ=1418* 10^3J](https://img.qammunity.org/2019/formulas/chemistry/high-school/cunt6v41s6c5ikyetvs00v4ne1v6t5zhi2.png)
= mass change = ?
c = speed of light =
![3* 10^8m/s](https://img.qammunity.org/2019/formulas/chemistry/high-school/jga4ycqtgnkhppw5hldvght9qiskdu5yhi.png)
Putting values in above equation, we get:
![1418* 10^(3)Kgm^2/s^2=\Delta m* (3* 10^8m/s)^2\\\\\Delta m=1.5755* 10^(-11)kg](https://img.qammunity.org/2019/formulas/chemistry/high-school/7ahavvrbynznydcrexuabgthsc1oxj8537.png)
Hence, the equivalent mass of the reaction is
![1.5755* 10^(-11)kg](https://img.qammunity.org/2019/formulas/chemistry/high-school/3x5z5ublt1shc0x3rlaxc4rb4xaj3xsii3.png)