ooh, fun
geometric sequences can be represented as
![a_n=a(r)^(n-1)](https://img.qammunity.org/2019/formulas/mathematics/college/dns81wr61nko8334y21rokod50b0aoyt9o.png)
so the first 3 terms are
![a_1=a](https://img.qammunity.org/2019/formulas/mathematics/college/s4hf1r6jg9p2l4l5364zhhii1jyxez2305.png)
![a_2=a(r)](https://img.qammunity.org/2019/formulas/mathematics/college/nhnux1h95u3vmg55z5ttwon78hgaypry80.png)
![a_2=a(r)^2](https://img.qammunity.org/2019/formulas/mathematics/college/yv78otpoplhvkq3jqm5lwl3nxi4u4lf5bg.png)
the sum is -7/10
![(-7)/(10)=a+ar+ar^2](https://img.qammunity.org/2019/formulas/mathematics/college/69wzxcc2fk4dqydab60xrf3ye9dbaq29i6.png)
and their product is -1/125
![(-1)/(125)=(a)(ar)(ar^2)=a^3r^3=(ar)^3](https://img.qammunity.org/2019/formulas/mathematics/college/pm9i9mmcqrybt043y6ogpjr2ysdtix0wib.png)
from the 2nd equation we can take the cube root of both sides to get
![(-1)/(5)=ar](https://img.qammunity.org/2019/formulas/mathematics/college/ee885boygs82f3x6a56pxzfyve5cshem73.png)
note that a=ar/r and ar²=(ar)r
so now rewrite 1st equation as
![(-7)/(10)=(ar)/(r)+ar+(ar)r](https://img.qammunity.org/2019/formulas/mathematics/college/ldv5gchpo9nuyi0k9ij4p6ppadxr0ul606.png)
subsituting -1/5 for ar
![(-7)/(10)=((-1)/(5))/(r)+(-1)/(5)+((-1)/(5))r](https://img.qammunity.org/2019/formulas/mathematics/college/qusnzneij1lqejbm5zwzb6ezvmr4o3iag1.png)
which simplifies to
![(-7)/(10)=(-1)/(5r)+(-1)/(5)+(-r)/(5)](https://img.qammunity.org/2019/formulas/mathematics/college/qxjdjm9647kk085lhfwaw98vbdqw0ymmnh.png)
multiply both sides by 10r
-7r=-2-2r-2r²
add (2r²+2r+2) to both sides
2r²-5r+2=0
solve using quadratic formula
for
![ax^2+bx+c=0](https://img.qammunity.org/2019/formulas/mathematics/middle-school/sqi0vpyo2gdbkafqd1bbrq9iux67ftjuak.png)
![x=(-b \pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2019/formulas/mathematics/college/lihe8yiveea681tnmlt7bwz1aygq2wqx11.png)
so
for 2r²-5r+2=0
a=2
b=-5
c=2
![r=(-(-5) \pm √((-5)^2-4(2)(2)))/(2(2))](https://img.qammunity.org/2019/formulas/mathematics/college/bm63ugmq9xiqhcd9a9xj7lwjfprqabgafl.png)
![r=(5 \pm √(25-16))/(4)](https://img.qammunity.org/2019/formulas/mathematics/college/bwcpzyxrzn7l4yu688b9njfymu7fwmwqav.png)
![r=(5 \pm √(9))/(4)](https://img.qammunity.org/2019/formulas/mathematics/college/m2afk7wu7pmnms48qu11ddu2366z8ew0h7.png)
![r=(5 \pm 3)/(4)](https://img.qammunity.org/2019/formulas/mathematics/college/hruw90ghgvhnngjrxp9ndmynhm0su9tj20.png)
so
![r=(5+3)/(4)=(8)/(4)=2](https://img.qammunity.org/2019/formulas/mathematics/college/h605oy78s0mrxzwwtxdblb9ya5ino9yrzj.png)
or
![r=(5-3)/(4)=(2)/(4)=(1)/(2)](https://img.qammunity.org/2019/formulas/mathematics/college/k24daa92knb0wgwu84brofyk4b95qnu6ww.png)
use them to solve for the value of a
![(-1)/(5)=ar](https://img.qammunity.org/2019/formulas/mathematics/college/ee885boygs82f3x6a56pxzfyve5cshem73.png)
![(-1)/(5r)=a](https://img.qammunity.org/2019/formulas/mathematics/college/5vekdw7do3z9ihj92yu9iky8i7qncrvo23.png)
try for r=2 and 1/2
![a=(-1)/(10)](https://img.qammunity.org/2019/formulas/mathematics/college/gz6l57zrx87qxioccijs9k4j4yc8m0rifs.png)
or
![a=(-2)/(5)](https://img.qammunity.org/2019/formulas/mathematics/college/qkxyi5ar2b7wfhz4tlcgqqheahj2x8y0jl.png)
test each
for a=-1/10 and r=2
a+ar+ar²=
![(-1)/(10)+(-2)/(10)+(-4)/(10)=(-7)/(10)](https://img.qammunity.org/2019/formulas/mathematics/college/nyuv8svvt3p8gwew08i3sab8qf8b5im9j4.png)
it works
for a=-2/5 and r=1/2
a+ar+ar²=
![(-2)/(5)+(-1)/(5)+(-1)/(10)=(-7)/(10)](https://img.qammunity.org/2019/formulas/mathematics/college/1ftmpd2rxfpr1ezt2fqes8z403cnxvw2pm.png)
it works
both have the same terms but one is simplified
the 3 numbers are
![(-2)/(5)](https://img.qammunity.org/2019/formulas/mathematics/college/32t3o1h75k9no4f033foowqrhp6ra6z1wa.png)
,
![(-1)/(5)](https://img.qammunity.org/2019/formulas/mathematics/college/qm83vjj4c3ohbmby57txeqqrpxbhio11ay.png)
, and
![(-1)/(10)](https://img.qammunity.org/2019/formulas/mathematics/college/pahn42evg4t6z94k6fwfqqr0qsg93dkdyc.png)