186k views
3 votes
Verify that the divergence theorem is true for the vector field f on the region

e. give the flux. f(x, y, z) = 4xi + xyj + 4xzk, e is the cube bounded by the planes x = 0, x = 2, y = 0, y = 2, z = 0, and z = 2.

1 Answer

7 votes
By the divergence theorem,


\displaystyle\iint_(\partial\mathcal E)\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\iiint_(\mathcal E)\\abla\cdot\mathbf f(x,y,z)\,\mathrm dx\,\mathrm dy\,\mathrm dz

where
\partial\mathcal E is the boundary of
\mathcal E. We have


\\abla\cdot\mathbf f(x,y,z)=(\partial(4x))/(\partial x)+(\partial(xy))/(\partial y)+(\partial(4xz))/(\partial z)=4+x+4x=5x+4

so the flux is


\displaystyle\int_(z=0)^(z=2)\int_(y=0)^(y=2)\int_(x=0)^(x=2)(5x+4)\,\mathrm dx\,\mathrm dy\,\mathrm dz=72
User FRules
by
5.4k points