Answer:
The standard deviation rounded to the nearest hundredth is 10.02.
Explanation:
The formula to find the standard deviation is
![\sigma = \sqrt^(2) )/(N-1)](https://img.qammunity.org/2019/formulas/mathematics/college/wl7y8gztxip0bisk70pvfu316k8zio9emj.png)
Where
represents the mean,
the total number of elements and
is each element.
So, first we need to find the mean
![\mu =(\Sigma x)/(N)=(27+38+47+42+33+56+37+57+38+52)/(10)= 42.7](https://img.qammunity.org/2019/formulas/mathematics/college/w5od6mg4ig46513dwv39pqkknb1uj9gjbc.png)
Then, we subtract the mean with each element and find its square power
![(27-42.7)^(2) =246.49\\(38-42.7)^(2)= 22.09\\(47-42.7)^(2)= 18.49\\(42-42.7)^(2)= 0.49\\(33-42.7)^(2)= 94.09\\(56-42.7)^(2)= 176.89\\(37-42.7)^(2)= 32.49\\(57-42.7)^(2)= 204.49\\(38-42.7)^(2)= 22.09\\(52-42.7)^(2)= 86.49](https://img.qammunity.org/2019/formulas/mathematics/college/9ri6f7pw11dwuh62b5x9ujdvdz7vkndea7.png)
Then, we sum all, and that would be the numerator to find the standard deviation
![\sigma = \sqrt^(2) )/(N-1) =\sqrt{(904.1)/(9) } =√(100.46)\\ \sigma =10.02](https://img.qammunity.org/2019/formulas/mathematics/college/d8qeyq3yn7l77tusp113jxke375l4jwebc.png)
Therefore, the standard deviation rounded to the nearest hundredth is 10.02.