Answer: The correct option is
(B)
![\log_35-2\log_3x.](https://img.qammunity.org/2019/formulas/mathematics/college/9902cj15xkbc6640gytv0yftdjoey9th76.png)
Step-by-step explanation: We are given to select the expression that is equivalent to the following logarithmic expression :
![E=\log_3(5)/(x^2)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)](https://img.qammunity.org/2019/formulas/mathematics/college/vhbmg64cyisdtbugrukrqyxwhxhp2xyf4j.png)
We will be using the following properties of logarithms :
![(i)~\log_a(b)/(c)=\log_ab-\log_ac,\\\\(ii)~\log_ab^c=c\log_ab.](https://img.qammunity.org/2019/formulas/mathematics/college/380zrj57c1qf6rj94e47s78kgpziizey2d.png)
From (i), we get
![E\\\\=\log_3(5)/(x^2)\\\\\\=\log_35-\log_3x^2~~~~~~~~~~~~~~~~~~~~[\textup{Using property (i)}]\\\\\\=\log_35-2\log_3x.~~~~~~~~~~~~~~~~~~~~[\textup{Using property (ii)}]](https://img.qammunity.org/2019/formulas/mathematics/college/29r2zltngoojfoymcx1qjaf83vzpcrg4bn.png)
Thus, the required equivalent expression is
![\log_35-2\log_3x.](https://img.qammunity.org/2019/formulas/mathematics/college/9902cj15xkbc6640gytv0yftdjoey9th76.png)
Option (B) is CORRECT.