It takes approximately 6.3 seconds to hit the ground.
We use the equation h(t)=-1/2gt²+v₀t+h₀ to set this up. g is the acceleration due to gravity, v₀ is the initial velocity and h₀ is the initial height:
h(t) = -1/2(32)t² + 100t + 5
h(t) = -16t² + 100t + 5
We will use the quadratic formula to solve this:
![t=(-b\pm√(b^2-4ac))/(2a) \\ \\=(-100\pm√(100^2-4(-16)(5)))/(2(-16)) \\ \\=(-100\pm√(10000--320))/(-32) \\ \\=(-100\pm√(10320))/(-32) \\ \\=(-100\pm101.59)/(-32) \\ \\=(-100+101.59)/(-32)\text{ or }(-100-101.59)/(-32) \\ \\=(1.59)/(-32)\text{ or }(-201.59)/(-32) \\ \\=-0.05\text{ or }6.3](https://img.qammunity.org/2019/formulas/mathematics/high-school/ctkprera6r7tei4tqtoxj2gk93w3gt6isb.png)
Since a negative amount of time makes no sense, the answer is 6.3.