A polynomial asymptote is a function
![p(x)](https://img.qammunity.org/2019/formulas/mathematics/college/aafakvej27siqwywyuafydxisj3fa5ghh9.png)
such that
![\displaystyle\lim_(x\to\pm\infty)(f(x)-p(x))=0](https://img.qammunity.org/2019/formulas/mathematics/college/6nurc82dkcktlerxvinmasapg1k461z2jp.png)
![(y+1)^2=4xy\implies y(x)=2x-1\pm2√(x^2-x)](https://img.qammunity.org/2019/formulas/mathematics/college/ednr2t8761ne5lqo6gkqdfo9era6dmaebl.png)
Since this equation defines a hyperbola, we expect the asymptotes to be lines of the form
![p(x)=ax+b](https://img.qammunity.org/2019/formulas/mathematics/college/b581ww1twykgaz0w0uws9uu8wamt1go3vv.png)
.
Ignore the negative root (we don't need it). If
![y=2x-1+2√(x^2-x)](https://img.qammunity.org/2019/formulas/mathematics/college/k24k0o8724sczog6l91wmt6s7f2gs7d31b.png)
, then we want to find constants
![a,b](https://img.qammunity.org/2019/formulas/mathematics/college/iqobg9v17ie9pb2q4s2566r7iu4wdfds57.png)
such that
![\displaystyle\lim_(x\to\infty)(2x-1+2√(x^2-x)-ax-b)=0](https://img.qammunity.org/2019/formulas/mathematics/college/mmifso84sp2lrou84v1wks0v8zz9ct818q.png)
We have
![√(x^2-x)=√(x^2)√(1-\frac1x)](https://img.qammunity.org/2019/formulas/mathematics/college/93vjdgiy3r6xw9d2wp5wyjrxq0i00q3xlm.png)
![√(x^2-x)=|x|√(1-\frac1x)](https://img.qammunity.org/2019/formulas/mathematics/college/ozyu6iw8hr706szae6ysntt1cd45jpik2b.png)
![√(x^2-x)=x√(1-\frac1x)](https://img.qammunity.org/2019/formulas/mathematics/college/zbcl5vyzuxcggep2icwisf9wpalsvhatar.png)
since
![x\to\infty](https://img.qammunity.org/2019/formulas/mathematics/college/w8wcmsacgmhyt5grlls4g1gou5o22qevuz.png)
forces us to have
![x>0](https://img.qammunity.org/2019/formulas/mathematics/college/uogt0tp2bvtule2aj85dx3jsvzfan9807m.png)
. And as
![x\to\infty](https://img.qammunity.org/2019/formulas/mathematics/college/w8wcmsacgmhyt5grlls4g1gou5o22qevuz.png)
, the
![\frac1x](https://img.qammunity.org/2019/formulas/mathematics/college/t4frbzwwv2x5b6yolmgohb6qtzac5wsr69.png)
term is "negligible", so really
![√(x^2-x)\approx x](https://img.qammunity.org/2019/formulas/mathematics/college/gmzh7vayoa08v6aye5wlmt8lxdnkmgf8rt.png)
. We can then treat the limand like
![2x-1+2x-ax-b=(4-a)x-(b+1)](https://img.qammunity.org/2019/formulas/mathematics/college/fyqxavn5p4syoo6grytsrvsdccrioxn71o.png)
which tells us that we would choose
![a=4](https://img.qammunity.org/2019/formulas/mathematics/college/m9fdvevu0zn79r6ktmlkn8xvib8t8oz5cz.png)
. You might be tempted to think
![b=-1](https://img.qammunity.org/2019/formulas/mathematics/college/zrgmi4und9oe4mz9o5iipa3ojh2iprpc29.png)
, but that won't be right, and that has to do with how we wrote off the "negligible" term. To find the actual value of
![b](https://img.qammunity.org/2019/formulas/mathematics/college/myv2xpbx0xoe5ipweiedhwixh3h7ydfst0.png)
, we have to solve for it in the following limit.
![\displaystyle\lim_(x\to\infty)(2x-1+2√(x^2-x)-4x-b)=0](https://img.qammunity.org/2019/formulas/mathematics/college/rgqg6lc220f944k7cdsr9ghwp1r6pak6hp.png)
![\displaystyle\lim_(x\to\infty)(√(x^2-x)-x)=\frac{b+1}2](https://img.qammunity.org/2019/formulas/mathematics/college/hlu2xq9ni75od0b0se2plvp15m9ckwtq8b.png)
We write
![(√(x^2-x)-x)\cdot(√(x^2-x)+x)/(√(x^2-x)+x)=((x^2-x)-x^2)/(√(x^2-x)+x)=-\frac x{x√(1-\frac1x)+x}=-\frac1{√(1-\frac1x)+1}](https://img.qammunity.org/2019/formulas/mathematics/college/o0o6f4a4ria4ng0ijn3zwyfs6gmi52v05o.png)
Now as
![x\to\infty](https://img.qammunity.org/2019/formulas/mathematics/college/w8wcmsacgmhyt5grlls4g1gou5o22qevuz.png)
, we see this expression approaching
![-\frac12](https://img.qammunity.org/2019/formulas/mathematics/college/dltfl9068n4yh79ihdmoh2xrgg0g7848h4.png)
, so that
![-\frac12=\frac{b+1}2\implies b=-2](https://img.qammunity.org/2019/formulas/mathematics/college/h3my1nohfugcj1pu03ylivrhb05rv29hn3.png)
So one asymptote of the hyperbola is the line
![y=4x-2](https://img.qammunity.org/2019/formulas/mathematics/college/ugbixc6bacjmuaghzhvuhn2acapevo8y6r.png)
.
The other asymptote is obtained similarly by examining the limit as
![x\to-\infty](https://img.qammunity.org/2019/formulas/mathematics/high-school/5naan47vbizc0x5wllyko55kzpjxd8w3gp.png)
.
![\displaystyle\lim_(x\to-\infty)(2x-1+2√(x^2-x)-ax-b)=0](https://img.qammunity.org/2019/formulas/mathematics/college/v5j5iqvnmza47i43bkw39t6bnka1yoaszj.png)
![\displaystyle\lim_(x\to-\infty)(2x-2x√(1-\frac1x)-ax-(b+1))=0](https://img.qammunity.org/2019/formulas/mathematics/college/9mmazo0uvljefftuixctp9aglyxc06jwk4.png)
Reduce the "negligible" term to get
![\displaystyle\lim_(x\to-\infty)(-ax-(b+1))=0](https://img.qammunity.org/2019/formulas/mathematics/college/w6c6qysov5ivgdqcmv5drlw9vy9fiw90g7.png)
Now we take
![a=0](https://img.qammunity.org/2019/formulas/mathematics/college/vwkt1v5jdq8tiy1diwe955fl32fsv0ioby.png)
, and again we're careful to not pick
![b=-1](https://img.qammunity.org/2019/formulas/mathematics/college/zrgmi4und9oe4mz9o5iipa3ojh2iprpc29.png)
.
![\displaystyle\lim_(x\to-\infty)(2x-1+2√(x^2-x)-b)=0](https://img.qammunity.org/2019/formulas/mathematics/college/xhckjgha4wxilw0rphshtfg5bvjme7u8ip.png)
![\displaystyle\lim_(x\to-\infty)(x+√(x^2-x))=\frac{b+1}2](https://img.qammunity.org/2019/formulas/mathematics/college/67qhjm0xkilq7lr9p58k5zu4e9keqqzool.png)
![(x+√(x^2-x))\cdot(x-√(x^2-x))/(x-√(x^2-x))=(x^2-(x^2-x))/(x-√(x^2-x))=\frac x{x-(-x)√(1-\frac1x)}=\frac1{1+√(1-\frac1x)}](https://img.qammunity.org/2019/formulas/mathematics/college/h9qkriij8piy66hhjrrkyfilh4wr9onvli.png)
This time the limit is
![\frac12](https://img.qammunity.org/2019/formulas/mathematics/college/lp2m1lp2njn9mtfxgyqcik2bw9lzqyzv99.png)
, so
![\frac12=\frac{b+1}2\implies b=0](https://img.qammunity.org/2019/formulas/mathematics/college/coiyy6y3iga9mqpy7p9doce8nsbkqk8wxk.png)
which means the other asymptote is the line
![y=0](https://img.qammunity.org/2019/formulas/mathematics/college/r0jlugcrkk1got8vuljk2uj8h02jl3vmti.png)
.