Answer:
The absolute maximum of f(x) on [-3, 4] is 138 and the absolute minimum of f(x) on [-3, 4] is -237.
Explanation:
To find the absolute extrema values of
on the closed interval [−3, 4] you must:
1. Locate all critical values. We need to find the derivative of the function and set it equal to zero.
![(d)/(dx)f(x)= (d)/(dx)\left(6x^3-9x^2-108x+6\right)=\\\\f'(x)=(d)/(dx)\left(6x^3\right)-(d)/(dx)\left(9x^2\right)-(d)/(dx)\left(108x\right)+(d)/(dx)\left(6\right)\\\\f'(x)=18x^2-18x-108](https://img.qammunity.org/2019/formulas/mathematics/college/da6xgeaudmq595yhz8hb08v7b8j8f45ka4.png)
![18x^2-18x-108=0\\18\left(x^2-x-6\right)=0\\18\left(x+2\right)\left(x-3\right)=0\\\\\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}\\x=-2,\:x=3](https://img.qammunity.org/2019/formulas/mathematics/college/oaphgsx8u6fqmf40yjd466aw11m6bn9kjy.png)
2. Evaluate f(x) at all the critical values and also at the two values -3 and 4
![\left\begin{array}{cc}x&f(x)\\-3&87\\-2&138\\3&-237\\4&-186\end{array}\right](https://img.qammunity.org/2019/formulas/mathematics/college/7agh54adqap8wie6ksu843lr33n2r1ztin.png)
3. The absolute maximum of f(x) on [-3, 4] will be the largest number found in Step 2, while the absolute minimum of f(x) on [-3, 4] will be the smallest number found in Step 2.
Therefore,
The absolute maximum of f(x) on [-3, 4] is 138 and the absolute minimum of f(x) on [-3, 4] is -237.