183k views
4 votes
Simplify the expression The root of negative nine over the quantity of three minus two i plus the quantity of one plus five i.

User Korroz
by
8.9k points

2 Answers

4 votes
This will be:
[√9]/[(3-2i)+(1+5i)]
simplifying the above we get:
√9/(3+1-2i+5i)
=√9/(4+3i)
rationalizing the denominator we get:
√9/(4-3i)×(4-3i)/(4-3i)
=[√9(4-3i)]/(16+9)
=[3(4-3i)]/25
=(12-9i)/25

Answer: (12-9i)/25
User Tamyka
by
7.8k points
2 votes

Solution:


(\sqrt-9)/([(3-2 i)+(1+5 i)])

Remember these complex formulas

1.
√(-1)=i

2. (a + b i) + (c +d i)=(a +c) + i(b+d), i.e real part should be added or subtracted to real part and imaginary part should be added or subtracted to imaginary part.

3. ( a + b i)(a - bi)= a² + b²

4.
i=√(-1),i^2=-1, i^3= -i, i^4=1

→So,
√(-9)= √(-1) * √(9)= 3 i

→3 - 2 i + 1 + 5 i= 4 + 3 i


(1)/(4+3 i)=(4 - 3 i)/((4 + 3 i)(4 - 3 i))=\frac {4-3 i}{25}→→Rationalizing the Denominator i.e complex number


(\sqrt-9)/([(3-2 i)+(1+5 i)])

=
(3 i (4 - 3 i))/(25)=(12 i +9)/(25)=(9)/(25) +(12 i)/(25)




User Gcswoosh
by
8.6k points