The relative pressure at the bottom of a column of fluid is given by
![p_r = \rho g h](https://img.qammunity.org/2019/formulas/physics/college/jfr2bb8sm0wjkczrrub86n640tx71i2a0z.png)
where
![\rho](https://img.qammunity.org/2019/formulas/physics/college/n3n7g2oxwis5sx68qu9s2cfa7k92mf1x39.png)
is the fluid density
g is the gravitational acceleration
h is the height of the column of fluid
At the bottom of the swimming pool, h=1.9 m, and the water density is
![\rho = 1000 kg/m^3](https://img.qammunity.org/2019/formulas/physics/college/zyx39zu4ofqxh654h8fputzl9c333wbk0k.png)
, therefore the relative pressure is
![p_r = (1000 kg/m^3)(9.81 m/s^2)(1.9 m)=1.86 \cdot 10^4 Pa](https://img.qammunity.org/2019/formulas/physics/college/84ovqcgwplomdxs1tceum41zxniqelwuer.png)
To find the absolute pressure, we must add to this the atmospheric pressure,
![p_a](https://img.qammunity.org/2019/formulas/physics/college/qlncgiihiu6xp90r6ikxqwtf0f4c1jxvhx.png)
:
![p= p_r + p_a= 1.86 \cdot 10^4 Pa + 1.01 \cdot 10^5 Pa =1.2 \cdot 10^5 Pa](https://img.qammunity.org/2019/formulas/physics/college/y83m1xk4s5bt9nnlkwjf0c44td00qjc603.png)