191k views
4 votes
Lim X approaches to zero

(x + \tan(4x) )/(2x)


User Ritave
by
7.5k points

1 Answer

3 votes

Answer:


\large\boxed{\lim\limits_(x\to0)(x+\tan(4x))/(2x)=2(1)/(2)=2.5}

Explanation:


\lim\limits_(x\to0)(x+\tan(4x))/(2x)=\lim\limits_(x\to0)\bigg((x)/(2x)+(\tan(4x))/(2x)\bigg)\\\\=\lim\limits_(x\to0)(x)/(2x)+\lim\limits_(x\to0)(\tan(4x))/(2x)=\lim\limits_(x\to0)(1)/(2)+\lim\limits_(x\to0)(\tan(4x))/(2x)\\\\=(1)/(2)+\lim\limits_(x\to0)(\tan(4x))/(2x)=(*)


\lim\limits_(x\to0)(\tan(4x))/(2x)\qquad\text{we have}\ \left((0)/(0)\right),\text{use L'Hospital's rule}\\\\=\lim\limits_(x\to0)(\left(\tan(4x)\right)')/((2x)')\\\\\bigg(\tan(4x)\bigg)'=(1)/(\cos^2(4x))\cdot(4x)'=(4)/(\cos^2(4x))\\\\(2x)'=2\\\\\text{substitute}\\\\=\lim\limits_(x\to0)((4)/(\cos^2(4x)))/(2)=\lim\limits_(x\to0)(4)/(2\cos^2(4x))=\lim\limits_(x\to0)(2)/(\cos^2(4x))=(2)/(\cos^2(4\cdot0))\\\\=(2)/(\cos^20)=(2)/(1)=2


(*)=(1)/(2)+2=2(1)/(2)

User Martin Doms
by
8.2k points