Answer:
1.) 0.2828
2.) 0.1414
3.) Option b
4.) Option a
5.) 0.2763
Explanation:
1.)
E(4X) = 4 * E(X) = 4 * 8 = 32


2.)



3.)
SD(4X) = 0.2828 > 0.1414
SInce SD(4X) >
is more precise representation of total kenght. Hence it is better representation.
So the answer is the option b).
4.)
Since n=100 > 30, Xbar will be normal.
So the answer is the option a) Normal.
5.)
Since nµ is the expected value of sample total, i.e., nXbar, the required probability
= P(|nXbar - nµ|≤ 0.25), where n = 100 and µ = 8.00
= P[( ≤ {0.25/(σ√n)}]
= P[|Z| ≤ {0.25/(√0.005)√100}]
= P(|Z| ≤ 0.3535)
= P(-0.3535 < Z < 0.3535)
= P(Z < 0.3535) - P(Z < - 0.3535)
= 0.6381 – 0.3618 (from Z-distribution table)
= 0.2763
Hope this helps!