Answer:
Step-by-step explanation:
Given
Distance of target d=75 m
velocity of bullet v=250 m/s
First taking horizontal motion
as there is no acceleration is horizontal direction therefore
![a_x=0](https://img.qammunity.org/2020/formulas/physics/middle-school/zt2u0hzfckwyn7238g02g5afgfoyc5h4ee.png)
![d=ut+(1)/(2)a_xt^2](https://img.qammunity.org/2020/formulas/physics/high-school/pn0m2kwu06032i22uyvu4mcf31ardbr3wd.png)
where u=initial velocity
=acceleration
t=time
![75=250* t](https://img.qammunity.org/2020/formulas/physics/high-school/905zdxl2x6cbmty51vr32u8pohz4sdop5j.png)
![t=0.3 s](https://img.qammunity.org/2020/formulas/physics/high-school/pdn0rp3pn4ykzypxl6tl4go4s5srsxpipy.png)
In this time Vertical distance moved by Bullet is
![y=u_yt+(1)/(2)a_yt^2](https://img.qammunity.org/2020/formulas/physics/high-school/kve28k4793bni08ju0a265oh33f0ot0teg.png)
here
![u_y=0](https://img.qammunity.org/2020/formulas/physics/high-school/i4mx46hexsmlyzpqz0e9f4l9380q36zcxf.png)
![a_y=g=9.8 m/s^2](https://img.qammunity.org/2020/formulas/physics/high-school/gq10swyptzsho0jkpocx39qgbhv3jtf5ac.png)
![y=(1)/(2)\cdot 9.8\cdot (0.3)^2](https://img.qammunity.org/2020/formulas/physics/high-school/q0lu4ygrcru5623gu8pcg87lhx2a86iu3f.png)
![y=0.441 m](https://img.qammunity.org/2020/formulas/physics/high-school/hr7sgkwsz35bgzsaewqtukq3u7mfpbiqwu.png)