Answer:
Option B.
Explanation:
Given information:
![n_1=50, \overline{x}_1=756, s_1=35](https://img.qammunity.org/2020/formulas/mathematics/college/ffyud23kfevdimg82ojvh50qvasn74rn1g.png)
![n_2=50, \overline{x}_1=762, s_2=30](https://img.qammunity.org/2020/formulas/mathematics/college/5vsqxoorq12kqhrxnfykch1z0vq45oa8g5.png)
We need to find 95% confidence interval estimate for the difference between the means of two normally distributed populations.
Formula for confidence interval:
![CI=(\overline{x}_1-\overline{x}_2)\pm z*\sqrt{(s_1^2)/(n_1)+(s_2^2)/(n_2)}](https://img.qammunity.org/2020/formulas/mathematics/college/16cpdditkcunust83cfbftjvc127mwvrxt.png)
From the standard normal table it is clear that the z value at 95% confidence interval is 1.96.
Substitute the given values in the above formula.
![CI=\left(756-762\right)\pm 1.96\sqrt{(35^(2))/(50)+(30^(2))/(50)}](https://img.qammunity.org/2020/formulas/mathematics/college/wom0e6v0bfi3wlvf0gw5e2taxqpek2dn4h.png)
![CI=\left(-6\right)\pm 1.96√(42.5)](https://img.qammunity.org/2020/formulas/mathematics/college/doaxaj1pe7x4m6jt2idbkdp5j8v7dzbmgy.png)
![CI=-6\pm 12.78](https://img.qammunity.org/2020/formulas/mathematics/college/kay5dkn3ljogifed1i1ihj9zwg42xvtc3z.png)
![CI=(-18.78, 6.78)](https://img.qammunity.org/2020/formulas/mathematics/college/5v4660gzo5bwwwebh9v5lmozj0fir4ksnb.png)
The lower confidence limit is −18.78.
Therefore, the correct option B.