12.8k views
0 votes
Simplify the expression (5x^2y^-5)^-3

User AJ Friend
by
7.2k points

2 Answers

3 votes

Answer:

y^15/125x^6

Explanation:

User Transhuman
by
7.8k points
1 vote

Answer:


\large\boxed{(1)/(125)x^(-6)y^(15)=(x^(-6)y^(15))/(125)=(y^(15))/(125x^6)}

Explanation:


\bigg(5x^2y^(-5)\bigg)^(-3)\\\\\text{use}\\(1)\qquad(a\cdot b)^n=a^n\cdot b^n\\(2)\qquad(a^n)^m=a^(n\cdot m)\\(3)\qquad a^(-n)=(1)/(a^n)\\\\\bigg(5x^2y^(-5)\bigg)^(-3)=5^(-3)\cdot(x^2)^(-3)\cdot(y^(-5))^(-3)\qquad(1)\\\\=(1)/(5^3)\cdot x^(2\cdot(-3))\cdot y^((-5)(-3))\qquad(3)\&(2)\\\\=(1)/(125)\cdot x^(-6)\cdot y^(15)\\\\=(1)/(125)\cdot(1)/(x^6)\cdot y^(15)\qquad(3)\\\\=(y^(15))/(125x^6)

User Old Schooled
by
9.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories