Answer:
a)
![P(\bar X<90)=P(Z<(90-99.9)/((30)/(√(38))))=P(Z<-2.03)= 0.0212](https://img.qammunity.org/2020/formulas/mathematics/college/a4so0hhqynhbweko54a8kb2cxfr39uascj.png)
b)
![P(98<\bar X<105)=P(-0.39<Z<1.05)=P(Z<1.05)-P(Z<-0.39)=0.8531-0.3483=0.5049](https://img.qammunity.org/2020/formulas/mathematics/college/glsfbcwu1vkn8f66063qevexizcfd7aoqk.png)
c)
![P(\bar X<112)=P(Z<(112-99.9)/((30)/(√(38))))=P(Z<2.49)= 0.9936](https://img.qammunity.org/2020/formulas/mathematics/college/433hrx2f90jpm5xirensnbvgp2xneqtb81.png)
d)
![P(93<\bar X<96)=P(-1.42<Z<-0.80)=P(Z<-0.80)-P(Z<-1.42)=0.2119-0.0778=0.1341](https://img.qammunity.org/2020/formulas/mathematics/college/44d3pfdhc9vh0qkou7etjehg3yl2vmdtnw.png)
Explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Part a
Let X the random variable that represent the heights of a population, and for this case we know the distribution for X is given by:
Where
and
![\sigma=30](https://img.qammunity.org/2020/formulas/mathematics/high-school/67b6hn5osvpyrwuq1dimu73jqizq2phbg1.png)
We select a random sample of n=36. And from the central limit theorem we know that the distribution for the sample is given by:
![\bar X \sim N(\mu =99.9 , (\sigma)/(√(n))= (30)/(√(38))=4.87)](https://img.qammunity.org/2020/formulas/mathematics/college/fpoixkkodlkm5lh00v0361baudflla9jq3.png)
And the best way to solve this problem is using the normal standard distribution and the z score given by:
![z=(x-\mu)/((\sigma)/(√(n)))](https://img.qammunity.org/2020/formulas/mathematics/college/koo3vbzftnm9iwwkp1kt7ykogz7qj15wyh.png)
If we apply this formula to our probability we got this:
![P(\bar X<90)=P((X-\mu)/((\sigma)/(√(n)))<(90-99.9)/((30)/(√(38))))](https://img.qammunity.org/2020/formulas/mathematics/college/b97fy1exg62jbnvx4e0a1dxzrmvb9pkebh.png)
![=P(Z<(90-99.9)/((30)/(√(38))))=P(Z<-2.03)= 0.0212](https://img.qammunity.org/2020/formulas/mathematics/college/l8yx8bi1iwmye7hdav1a73dpz21fqvxgcj.png)
Part b
For this case we want this probability:
![P(98<\bar X<105)=P((98-\mu)/((\sigma)/(√(n)))<(X-\mu)/((\sigma)/(√(n)))<(105-\mu)/((\sigma)/(√(n))))](https://img.qammunity.org/2020/formulas/mathematics/college/rky5cvvhgh0vv365ez76s2xbadgh8dtdai.png)
![=P((98-99.9)/((30)/(√(38)))<Z<(105-99.9)/((30)/(√(38))))=P(-0.39<Z<1.05)](https://img.qammunity.org/2020/formulas/mathematics/college/kx8wc3by38lyp69m8fau7xhjgs0jtj9262.png)
And we can find this probability on this way:
![P(-0.39<Z<1.05)=P(Z<1.05)-P(Z<-0.39)](https://img.qammunity.org/2020/formulas/mathematics/college/tsyy2c5lzm83e0ornvy8bc5j5aiu1dwejx.png)
And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.
![P(-0.39<Z<1.05)=P(Z<1.05)-P(Z<-0.39)=0.8531-0.3483=0.5049](https://img.qammunity.org/2020/formulas/mathematics/college/pxqxflfqavfo5q8hgsqjgoz3h4wh8p67h5.png)
Part c
If we apply this formula to our probability we got this:
![P(\bar X<112)=P((X-\mu)/((\sigma)/(√(n)))<(112-99.9)/((30)/(√(38))))](https://img.qammunity.org/2020/formulas/mathematics/college/qeh20zymok8mqmqx175cxfqzv7kcy129oo.png)
![P(\bar X<112)=P(Z<(112-99.9)/((30)/(√(38))))=P(Z<2.49)= 0.9936](https://img.qammunity.org/2020/formulas/mathematics/college/433hrx2f90jpm5xirensnbvgp2xneqtb81.png)
Part d
For this case we want this probability:
![P(93<\bar X<96)=P((93-\mu)/((\sigma)/(√(n)))<(X-\mu)/((\sigma)/(√(n)))<(96-\mu)/((\sigma)/(√(n))))](https://img.qammunity.org/2020/formulas/mathematics/college/nb5m8jrvj5aobk0wo0tctu5q38vz6az249.png)
![=P((93-99.9)/((30)/(√(38)))<Z<(96-99.9)/((30)/(√(38))))=P(-1.42<Z<-0.80)](https://img.qammunity.org/2020/formulas/mathematics/college/mmz3bc206x7405t7j3mm2rkg5897x0j1r2.png)
And we can find this probability on this way:
![P(-1.42<Z<-0.80)=P(Z<-0.80)-P(Z<-1.42)](https://img.qammunity.org/2020/formulas/mathematics/college/31nwxfwwhkmhqhbu5kfppy3he37zhrgoq5.png)
And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.
![P(-1.42<Z<-0.80)=P(Z<-0.80)-P(Z<-1.42)=0.2119-0.0778=0.1341](https://img.qammunity.org/2020/formulas/mathematics/college/6dli53so78l6266ohhe4wnlj87ep49t3d0.png)