Answer:
Distance from the airport = 894.43 km
Explanation:
Displacement and Velocity
The velocity of an object assumed as constant in time can be computed as
![\displaystyle \vec{v}=\frac{\vec{x}}{t}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a2c3ehxelakpagmywwjevyg2ksie8nauuq.png)
Where
is the displacement. Both the velocity and displacement are vectors. The displacement can be computed from the above relation as
![\displaystyle \vec{x}=\vec{v}.t](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3na7ld991rdl9yxl4cbdi30vmnk57dl7gr.png)
The plane goes at 400 Km/h on a course of 120° for 2 hours. We can compute the components of the velocity as
![\displaystyle \vec{v_1}=<400\ cos\ 120^o,400\ sin\ 120^o>](https://img.qammunity.org/2020/formulas/mathematics/middle-school/15vq88em1hhltfv21eu1h6bjny0qza6vq1.png)
![\displaystyle \vec{v_1}=<-200,\ 200√(3)>\ km/h](https://img.qammunity.org/2020/formulas/mathematics/middle-school/esx57g0is0anpol6wfkw2tkar8l1uyt8ax.png)
The displacement of the plane in 2 hours is
![\displaystyle \vec{x_1}=\vec{v_1}.t_1=<-200,200√(3)>.(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n6om3jvch6e0fdt4j61kz68b5s2j5d0qoj.png)
![\displaystyle \vec{x_1}=<-400,400√(3)>km](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jc8alw7dp985hwhxurac87tn5imhqzamvx.png)
Now the plane keeps the same speed but now its course is 210° for 1 hour. The components of the velocity are
![\displaystyle \vec{v_2}=<400\ cos210^o,400\ sin 210^o>](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8avpkf8gsv0zeckemllpd7g0mxootu5heu.png)
![\displaystyle \vec{v_2}=<-200√(3),-200>km/h](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v9fvfddbbpcnkcxebg4i7nobszjp57t6vo.png)
The displacement in 1 hour is
![\displaystyle \vec{x_2}=\vec{v_2}.t_2=<-200√(3),-200>.(1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zxpqekclg4ngw5gpreeymocatq54089x3d.png)
![\displaystyle \vec{x_2}=<-200√(3),-200>km](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dtkzqes22l1w8gm73xi0c81msacviiylkc.png)
The total displacement is the vector sum of both
![\displaystyle \vec{x_t}=\vec{x_1}+\vec{x_2}=<-400,400√(3)>+<-200√(3),-200>](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tbh3hy0igrxehp4qrrbkh35rfsdrfidigm.png)
![\displaystyle \vec{x_t}=<-400-200√(3),400√(3)-200>km](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9qmbbx9i7vpi72w5ibnxjgmfnovmpwwads.png)
![\displaystyle \vec{x_t}=<-746.41\ km,492.82\ km>](https://img.qammunity.org/2020/formulas/mathematics/middle-school/erki5sj24mzywosov2t0u6cx42fmz2qqyy.png)
The distance from the airport is the module of the displacement:
![\displaystyle |\vec{x_t}|=√((-746.41)^2+492.82^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qxl5um1o32v1n3le82p3iwgf08qvxdhm1p.png)
![\displaystyle |\vec{x_t}|=894.43\ km](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zsz7bvu09405910mo7equ2tme77o6nvecx.png)