Answer:
Yes, you are right.
See explanation.
Explanation:
The definition of derivative is:
.
We are given
.
Assume
are constants.
If
then
.
Let's plug them into our definition above:
![f'(x)=\lim_(h \rightarrow 0) (f(x+h)-f(x))/(h)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ocha0pfmkrdgk7ud2cvzvyvbz61zr2b6a9.png)
![f'(x)=\lim_(h \rightarrow 0) (((x+h)+a)/((x+h)+b)-(x+a)/(x+b))/(h)](https://img.qammunity.org/2020/formulas/mathematics/college/vr95vck3lluwvn62t2krm2pue0jz29jv36.png)
I'm going to find a common denominator for the main fraction's numerator.
That is, I'm going to multiply first fraction by
and
I'm going to multiply second fraction by
.
This gives me:
![f'(x)=\lim_(h \rightarrow 0) ((((x+h)+a)(x+b))/(((x+h)+b)(x+b))-((x+a)((x+h)+b))/((x+b)((x+h)+b)))/(h)](https://img.qammunity.org/2020/formulas/mathematics/college/ilknyt1v02tysspex9eyjmgi9mhl0e8wjc.png)
Now we can combine the fractions in the numerator:
![f'(x)=\lim_(h \rightarrow 0) ((((x+h)+a)(x+b)-(x+a)((x+h)+b))/(((x+h)+b)(x+b)))/(h)](https://img.qammunity.org/2020/formulas/mathematics/college/ezpjgco320gej9ttj3t19h347eounvvvu8.png)
I'm going to multiply a bit on top and see if there is anything than can be canceled:
![f'(x)=\lim_(h \rightarrow 0) (((x+h)x+(x+h)b+ax+ab-x(x+h)-xb-a(x+h)-ab)/(((x+h)+b)(x+b)))/(h)](https://img.qammunity.org/2020/formulas/mathematics/college/zqg80ric0ncxr68ckqw0hiakobsuklyxw3.png)
Note: I do see that
.
I also see
.
I will also distributive in other places in the mini-fraction's numerator.
![f'(x)=\lim_(h \rightarrow 0) ((xb+bh+ax-xb-ax-ah)/(((x+h)+b)(x+b)))/(h)](https://img.qammunity.org/2020/formulas/mathematics/college/adt6lrcbpho8ceaq95u61z1u8m6z0f2tdy.png)
Note: I see
.
I also see
.
![f'(x)=\lim_(h \rightarrow 0) ((bh-ah)/(((x+h)+b)(x+b)))/(h)](https://img.qammunity.org/2020/formulas/mathematics/college/frh1s0qpmigq5v4uf4qa3kf3j3mrtsi620.png)
In the numerator of the mini-fraction on top the two terms contain a factor of
so I can factor that out.
This will give me something to cancel out across the main fraction since
.
![f'(x)=\lim_(h \rightarrow 0) ((h(b-a))/(((x+h)+b)(x+b)))/(h)](https://img.qammunity.org/2020/formulas/mathematics/college/sq31f85xpvj67vzob37qngxqrmesmky5qo.png)
![f'(x)=\lim_(h \rightarrow 0) (((b-a))/(((x+h)+b)(x+b)))/(1)](https://img.qammunity.org/2020/formulas/mathematics/college/bj1w8k4cxbxlcyqpxa6wl1zxqhlss56fxt.png)
So we now have gotten rid of what would make this over 0 if we had replace
with 0.
So now to evaluate the limit, that is also we have to do now.
![(((b-a))/(((x+0)+b)(x+b)))/(1)](https://img.qammunity.org/2020/formulas/mathematics/college/zzu40t5o9wifmdplftpi6i158zwb60dvwj.png)
![((b-a))/(((x)+b)(x+b)))/(1)](https://img.qammunity.org/2020/formulas/mathematics/college/wl37duhshb07v3hmgvj5mop2xnfgppmj2a.png)
![(((b-a))/((x+b)(x+b)))/(1)](https://img.qammunity.org/2020/formulas/mathematics/college/f9x8wwvlztx8bmrp6wx2tts6dgtbayraqw.png)
I'm going to go ahead and rewrite this so that isn't over 1 anymore because we don't need the division over 1.
![(b-a)/((x+b)(x+b))](https://img.qammunity.org/2020/formulas/mathematics/college/bg3lgba1poagz13emp09snwfh27pq26uui.png)
![(b-a)/((x+b)^2)](https://img.qammunity.org/2020/formulas/mathematics/college/9tik4wev6vi89y6gensvhusrvqlfyjlfky.png)
or what you wrote:
![(-a+b)/((x+b)^2)](https://img.qammunity.org/2020/formulas/mathematics/college/y8ssksqkt6mms4ez9fxd73137qa8kbmwb2.png)